Rocket propulsion is any method used to accelerate spacecraft and artificial satellites. There are many different methods. Each method has drawbacks and




Скачать 204.79 Kb.
НазваниеRocket propulsion is any method used to accelerate spacecraft and artificial satellites. There are many different methods. Each method has drawbacks and
страница1/5
Дата конвертации13.02.2013
Размер204.79 Kb.
ТипДокументы
  1   2   3   4   5
1) Introduction

Rocket propulsion is any method used to accelerate spacecraft and artificial satellites. There are many different methods. Each method has drawbacks and advantages. However, most spacecraft today are propelled by forcing a gas from the back/rear of the vehicle at very high speed through a supersonic de Laval nozzle. This sort of engine is called a rocket engine.

All current spacecraft use chemical rockets (bipropellant or solid-fuel) for launch, though some use air-breathing engines on their first stage. Most satellites have simple reliable chemical thrusters (often monopropellant rockets) or resistojet rockets for orbital station-keeping and some use momentum wheels for attitude control. Soviet bloc satellites have used electric propulsion for decades, and newer Western geo-orbiting spacecraft are starting to use them for north-south stationkeeping. Interplanetary vehicles mostly use chemical rockets as well, although a few have used ion thrusters and Hall Effect thrusters (two different types of electric propulsion) to great success.

2) History

Just when the first true rockets appeared is unclear. Stories of early rocket like devices appear sporadically through the historical records of various cultures. Perhaps the first true rockets were accidents. In the first century A.D., the Chinese were reported to have had a simple form of gunpowder made from saltpeter, sulfur, and charcoal dust. It was used mostly for fireworks in religious and other festive celebrations. Bamboo tubes were filled with the mixture and tossed into fires to create explosions during religious festivals. lt is entirely possible that some of those tubes failed to explode and instead skittered out of the fires, propelled by the gases and sparks produced by the burning gunpowder.

http://www.allstar.fiu.edu/aero/images/history2a.gif

It is certain that the Chinese began to experiment with the gunpowder-filled tubes. At some point, bamboo tubes were attached to arrows and launched with bows. Soon it was discovered that these gunpowder tubes could launch themselves just by the power produced from the escaping gas. The true rocket was born.

During the latter part of the 17th century, the scientific foundations for modern rocketry were laid by the great English scientist Sir Isaac Newton (1642-1727). Newton organized his understanding of physical motion into three scientific laws. The laws explain how rockets work and why they are able to work in the vacuum of outer space.Newton's laws soon began to have a practical impact on the design of rockets.Rocket experimenters in Germany and Russia began working with rockets with a mass of more than 45 kilograms. Some of these rockets were so powerful that their escaping exhaust flames bored deep holes in the ground even before lift-off.

During the end of the 18th century and early into the 19th, rockets experienced a brief revival as a weapon of war. The success of Indian rocket barrages against the British in 1792 and again in 1799 caught the interest of an artillery expert, Colonel William Congreve. Congreve set out to design rockets for use by the British military.The Congreve rockets were highly successful in battle.Even with Congreve's work, the accuracy of rockets still had not improved much from the early days. All over the world, rocket researchers experimented with ways to improve accuracy. An Englishman, William Hale, developed a technique called spin stabilization. In this method, the escaping exhaust gases struck small vanes at the bottom of the rocket, causing it to spin much as a bullet does in flight. Variations of the principle are still used today.

3) Birth of modern rockets

In 1898, a Russian schoolteacher, Konstantin Tsiolkovsky (1857-1935), proposed the idea of space exploration by rocket. In a report he published in 1903, Tsiolkovsky suggested the use of liquid propellants for rockets in order to achieve greater range. Tsiolkovsky stated that the speed and range of a rocket were limited only by the exhaust velocity of escaping gases. For his ideas, careful research, and great vision, Tsiolkovsky has been called the father of modern astronautic.

Early in the 20th century, an American, Robert H. Goddard (1882-1945), conducted practical experiments in rocketry. He had become interested in a way of achieving higher altitudes than were possible for lighter-than-air balloons. He published a pamphlet in 1919 entitled A Method of Reaching Extreme Altitudes. It was a mathematical analysis of what is today called the meteorological sounding ro

In his pamphlet, Goddard reached several conclusions important to rocketry. From his tests, he stated that a rocket operates with greater efficiency in a vacuum than in air. Goddard also stated that

multistage or step rockets were the answer to achieving high altitudes and that the velocity needed to escape Earth's gravity could be achieved in this way.Goddard's earliest experiments were with solid-propellant rockets. In 1915, he began to try various types of solid fuels and to measure the exhaust velocities of the burning gases. While working on solid-propellant rockets, Goddard became convinced that a rocket could be propelled better by liquid fuel. No one had ever built a successful liquid-propellant rocket before. It was a much more difficult task than building solid- propellant rockets. Fuel and oxygen tanks, turbines, and combustion chambers would be needed. In spite of the difficulties, Goddard achieved the first successful flight with a liquid- propellant rocket on March 16, 1926. Fueled by liquid oxygen and gasoline, the rocket flew for only two and a half seconds, climbed 12.5 meters, and landed 56 meters away in a cabbage patch. By today's standards, the flight was unimpressive, but like the first powered airplane flight by the Wright brothers in 1903, Goddard's gasoline rocket was the forerunner of a whole new era in rocket flight.

http://www.allstar.fiu.edu/aero/images/history4.gif

A third great space pioneer, Hermann Oberth (1894-1989) of Germany, published a book in 1923 about rocket travel into outer space. His writings were important. Because of them, many small rocket societies sprang up around the world. In Germany, the formation of one such society, the Verein fur Raumschiffahrt (Society for Space Travel), led to the development of the V-2 rocket, which was used against London during World War II

The V-2 rocket (in Germany called the A-4) was small by comparison to today's rockets. It achieved its great thrust by burning a mixture of liquid oxygen and alcohol at a rate of about one ton every seven seconds. Once launched, the V-2 was a formidable weapon that could devastate whole city blocks.With the fall of Germany, many unused V-2 rockets and components were captured by the Allies. Many German rocket scientists came to the United States. Others went to the Soviet Union.

http://www.allstar.fiu.edu/aero/images/history5.gif

A few months after the first Sputnik, the United States followed the Soviet Union with a satellite of its own. Explorer I was launched by the U.S. Army on January 31, 1958. Soon, many people and machines were being launched into space. Astronauts orbited Earth and landed on the Moon. Robot spacecraft traveled to the planets. Space was suddenly opened up to exploration and commercial exploitation.. As the demand for more and larger payloads increased, a wide array of powerful and versatile rockets had to be built.Since the earliest days of discovery and experimentation, rockets have evolved from simple gunpowder devices into giant vehicles capable of traveling into outer space. Rockets have opened the universe to direct exploration by humankind.

4) General characteristics and principles

The rocket differs from the turbojet and other “air-breathing” engines in that all of the exhaust jet consists of the gaseous combustion products of “propellants” carried on board. Like the turbojet engine, the rocket develops thrust by the rearward ejection of mass at very high velocity.

The fundamental physical principle involved in rocket propulsion was formulated by Sir Isaac Newton. According to his third law of motion, the rocket experiences an increase inmomentum proportional to the momentum carried away in the exhaust,

http://media-3.web.britannica.com/eb-media/93/15993-004-4590959f.gif

where M is the rocket mass, ΔvR is the increase in velocity of the rocket in a short time interval, Δtm° is the rate of mass discharge in the exhaust, ve is the effective exhaust velocity (nearly equal to the jet velocity and taken relative to the rocket), and F is force. The quantity m°ve is the propulsive force, or thrust, produced on the rocket by exhausting the propellant,

http://media-3.web.britannica.com/eb-media/92/15992-004-4fcff9c4.gif

Evidently thrust can be made large by using a high mass discharge rate or high exhaust velocity. Employing high m° uses up the propellant supply quickly (or requires a large supply), and so it is preferable to seek high values of ve. The value of ve is limited by practical considerations, determined by how the exhaust is accelerated in the supersonic nozzle and what energy supply is available for the propellant heating.


Most rockets derive their energy in thermal form by combustion of condensed-phase propellants at elevated pressure. The gaseous combustion products are exhausted through the nozzle that converts most of the thermal energy to kinetic energy. The maximum amount of energy available is limited to that provided by combustion or by practical considerations imposed by the high temperature involved. Higher energies are possible if other energy are used in conjunction with the chemical propellants on board the rockets, and extremely high energies are achievable when the exhaust is accelerated by electromagnetic means

. c:\users\anoop\documents\rocket1.gif

The effective exhaust velocity is the figure of merit for rocket propulsion because it is a measure of thrust per unit mass of propellant consumed—i.e.,

http://media-1.web.britannica.com/eb-media/91/15991-004-05f25f1d.gif

Values of ve are in the range 2,000–5,000 metres (6,500–16,400 feet) per second for chemical propellants, while values two or three times that are claimed for electrically heated propellants. Values beyond 40,000 metres (131,000 feet) per second are predicted for systems using electromagnetic acceleration.

In a typical chemical-rocket mission, anywhere from 50 to 95 percent or more of the takeoff mass is propellant. This can be put in perspective by the equation for burnout velocity (assuming gravity-free and drag-free flight)

http://media-2.web.britannica.com/eb-media/90/15990-004-bd4f4d6e.gif

In this expression, Ms/Mp is the ratio of propulsion system and structure mass to propellant mass, with a typical value of 0.09 (the symbol ln represents natural logarithm). Mp/Mo is the ratio of propellant mass to all-up takeoff mass, with a typical value of 0.90. A typical value for ve for a hydrogenoxygen system is 3,536 metres (11,601 feet) per second. From the above equation, the ratio of payload mass to takeoff mass (Mpay/Mo) can be calculated.

A technique called multiple staging is used in many missions to minimize the size of the takeoff vehicle. A launch vehicle carries a second rocket as its payload, to be fired after burnout of the first stage (which is left behind). In this way, the inert components of the first stage are not carried to final velocity, with the second-stage thrust being more effectively applied to the payload.

4.1) principle of operation of a rocket

Rocket engines produce thrust by the expulsion of a high-speed fluid exhaust. This fluid is nearly always a gas which is created by high pressure (10-200 bar) combustion of solid or liquid propellants, consisting of fuel and oxidiser components, within a combustion chamber.The fluid exhaust is then passed through a supersonic propelling nozzle which uses heat energy of the gas to accelerate the exhaust to very high speed, and the reaction to this pushes the engine in the opposite direction.In rocket engines, high temperatures and pressures are highly desirable for good performance as this permits a longer nozzle to be fitted to the engine, which gives higher exhaust speeds, as well as giving better thermodynamic efficiency.
  1   2   3   4   5

Добавить в свой блог или на сайт

Похожие:

Rocket propulsion is any method used to accelerate spacecraft and artificial satellites. There are many different methods. Each method has drawbacks and iconThe modified method of the least squares prony's using iterative method steiglitz and mcbride
Аr [1] it is possible to interpret the first and second stages at realization mlsp as procedure of calculation of poles of the some...

Rocket propulsion is any method used to accelerate spacecraft and artificial satellites. There are many different methods. Each method has drawbacks and icon1] basic concepts of rocket propulsion

Rocket propulsion is any method used to accelerate spacecraft and artificial satellites. There are many different methods. Each method has drawbacks and iconNotes on anthropological method

Rocket propulsion is any method used to accelerate spacecraft and artificial satellites. There are many different methods. Each method has drawbacks and iconConstruction Method Analysis

Rocket propulsion is any method used to accelerate spacecraft and artificial satellites. There are many different methods. Each method has drawbacks and iconNeptune and its captured moon Triton are unexplored with modern spacecraft instrumentation. Observations of these objects are urgently needed to address planet formation and the evolution of ice giant planets, icy satellites, Kuiper Belt Objects, and the solar system itself

Rocket propulsion is any method used to accelerate spacecraft and artificial satellites. There are many different methods. Each method has drawbacks and iconInductive and deductive method of research

Rocket propulsion is any method used to accelerate spacecraft and artificial satellites. There are many different methods. Each method has drawbacks and iconArticle 1 intent, purpose, and method

Rocket propulsion is any method used to accelerate spacecraft and artificial satellites. There are many different methods. Each method has drawbacks and icon4. Method of Selection and Evaluation Criteria 25

Rocket propulsion is any method used to accelerate spacecraft and artificial satellites. There are many different methods. Each method has drawbacks and iconChapter Artificial Intelligence Methods for Location Prediction 43

Rocket propulsion is any method used to accelerate spacecraft and artificial satellites. There are many different methods. Each method has drawbacks and iconTheory and method in historical social science


Разместите кнопку на своём сайте:
lib.convdocs.org


База данных защищена авторским правом ©lib.convdocs.org 2012
обратиться к администрации
lib.convdocs.org
Главная страница