Материалы и конструкции для повышения сейсмостойкости зданий и сооружений (Системный подход)




НазваниеМатериалы и конструкции для повышения сейсмостойкости зданий и сооружений (Системный подход)
страница1/6
Дата конвертации14.11.2012
Размер0.66 Mb.
ТипАвтореферат
  1   2   3   4   5   6


На правах рукописи


МАЖИЕВ Хасан Нажоевич


Материалы и конструкции для повышения

сейсмостойкости зданий и сооружений

(Системный подход)


Специальности:

05.23.05 – Строительные материалы и изделия;

05.23.01 – Строительные конструкции, здания и сооружения


Автореферат

диссертации на соискание ученой степени

доктора технических наук


Махачкала – 2011


Работа выполнена в ФГБОУ ВПО «Грозненский государственный нефтяной технический университет имени академика М.Д. Миллионщикова»



Научные консультанты:

-

доктор технических наук, профессор

Айзенберг Яков Моисеевич;

доктор технических наук, профессор

Батаев Дена Карим-Султанович

Официальные оппоненты:





-


член-корреспондент РААСН,
доктор технических наук, профессор

Меркулов Сергей Иванович;




Ведущая организация –

-


-


-


доктор технических наук, профессор

Ахматов Мусса Ахматович;


доктор технических наук, профессор

Курочка Павел Никитович


Научно-исследовательский, проектно-конструкторский и технологический институт бетона и железобетона (НИИЖБ) им. А.А. Гвоздева



Защита состоится « 17 » декабря 2011 года в 14.00 часов на заседании диссертационного Совета Д 212.052.03 при ФГБОУ ВПО «Дагестанский государственный технический университет» по адресу: 367015, г. Махачкала, пр. Имама Шамиля, 70, ауд. 202. Факс (8722) 623761, e-mail: dstu@dstu.ru


С диссертацией можно ознакомиться в библиотеке ФГБОУ ВПО «Дагестанский государственный технический университет».


Автореферат разослан “____”______________2011 г.


Ученый секретарь

диссертационного совета,

кандидат технических наук Х.Р. Зайнулабидова


1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ


Актуальность темы исследования. Развитие методов, способов и средств обеспечения надежности зданий и сооружений в сейсмических районах и снижение затрат, связанных с сейсмической опасностью, является глобальной проблемой, решение которой имеет важное научно-прикладное значение.

Важным компонентом, обеспечивающим надежность зданий и сооружений при сейсмических воздействиях является, как известно, материал конструкций. Основными свойствами, обеспечивающими сейсмостойкость конструкций зданий и сооружений, являются прочность при повторных нагружениях, ударная и динамическая прочность, выносливость, деформативность, энергопоглощаемость и пр.

В сейсмически опасных районах эффективным для строительства материалом может быть мелкозернистый бетон, полученный из техногенного сырья, который обладает рядом свойств, обеспечивающих сейсмостойкость конструкций.

Традиционные методы повышения сейсмостойкости бетонных и железобетонных конструкций сводятся, в основном, к наращиванию новых армированных слоев бетона, созданию стальных обойм или полной замене конструкций, что достаточно трудоемко и приводит к дополнительным материальным затратам.

Рассматриваемые в работе методы повышения сейсмостойкости зданий и сооружений с применением мелкозернистых пропитанных бетонов, многокомпонентных бетонов, фибробетонов, шлакозолобетонов, безусадочных и расширяющихся бетонов являются более эффективными и способствуют повышению качества и производительности труда.

Очевидно, что разработка и широкое применение сейсмостойких мелкозернистых бетонов, в том числе на основе использования техногенного сырья, является задачей весьма важной и актуальной.

Оценить в целом поведение зданий и сооружений при сейсмических воздействиях невозможно без анализа реального характера разрушения, сведений о свойствах материала конструкций и расчетных схемах. Исследования по дальнейшему развитию методов расчета зданий и сооружений на сейсмические воздействия с учетом антисейсмических свойств материалов несущих конструкций актуальны как для теории, так и для практики строительства. Другое важное направление оптимизации объемов антисейсмических мероприятий - снижение сейсмических нагрузок на сооружение за счет рационального выбора его динамических характеристик.

В условиях неопределенности характеристик сейсмического воздействия эффективными оказываются сейсмостойкие строительные материалы, конструкции и системы сейсмозащиты, параметры которых могут меняться в процессе землетрясения, приспосабливаясь к сейсмическим воздействиям. Речь идет в частности о системах с сейсмоизолирующими тарельчатыми фундаментами (СТФ) и выключающимися связями (ВС), применение которых обеспечивает дополнительные резервы несущей способности конструкций и значительно повышает сейсмостойкость зданий и сооружений.

При использовании в городской застройке зданий повышенной этажности в случаях, когда они строятся в районах, подверженных не только высоким сейсмическим, но и значительным ветровым воздействиям, возникает необходимость статистического сочетания этих двух видов нагрузок. Поскольку спектры сейсмических колебаний грунта и флуктуации ветра существенно различны, эффективной защитой зданий от сейсмических и ветровых воздействий является использование систем с СТФ и ВС с перестраивающимися динамическими характеристиками.

Таким образом, в диссертационной работе проблема повышения сейсмостойкости зданий и сооружений решается на основе единого комплексного подхода к системе «сейсмостойкие строительные материалы – строительные конструкции – грунтовое основание – сейсмические, ветровые и другие воздействия» и является актуальной, имеющей важное хозяйственное значение.

Степень изученности проблемы. Проведенный анализ позволил сделать вывод, что методы ремонта и усиления железобетонных конструкций с применением мелкозернистых составов пропитанных бетонов, фибробетонов, шлакозолобетонов, композиционных бетонов, а также расширяющих и напрягающих составов не достаточно отработаны и свидетельствует об актуальности проблемы разработки сейсмостойких строительных материалов и поиска рациональных динамических характеристик высоких зданий с сейсмоизолирующими тарельчатыми фундаментами и выключающимися связями (СТФ и ВС) в условиях вероятности возникновения воздействий с существенно различающимися характеристиками (сейсмические и ветровые воздействия).

Целью диссертационного исследования является разработка и исследование материалов, конструкций и устройств для обеспечения и повышения сейсмостойкости зданий и сооружений в системе «сейсмостойкие строительные материалы – строительные конструкции – грунтовое основание – сейсмические, ветровые и другие воздействия».

В диссертации ставятся и решаются следующие задачи:

- теоретические и экспериментальные исследования стойкости и структурообразования, физических и физико-механических свойств мелкозернистых бетонов для повышения сейсмостойкости зданий и сооружений;

- разработка и исследование безусадочных и расширяющихся мелкозернистых бетонов, пропитанных бетонов, а также мелкозернистого бетона с дисперсным армированием и мелкозернистого шлакозолобетона;

- теоретические и экспериментальные исследования механизма обеспечения связи старого бетона с новым и омоноличивания контактной зоны;

- исследования реальных зданий с СТФ и ВС;

- построение расчетных моделей для определения динамической реакции высоких зданий с СТФ и ВС, в том числе с учетом результатов экспериментальных исследований для случая расположения СТФ и ВС в нижнем этаже;

- анализ динамической реакции высоких зданий с СТФ и ВС при действии сейсмической и ветровой нагрузок;

- анализ статистического сочетания сейсмической и ветровой нагрузки для зданий с СТФ и ВС;

- исследование задачи выбора рациональных динамических характеристик зданий с СТФ и ВС в зависимости от конструктивного решения и высоты здания, а также от интенсивности ветровой и сейсмической нагрузки и составление практических рекомендаций;

- разработка методики оценки степени повреждений зданий и сооружений;

- исследование грунтового основания разрушенных зданий и сооружений с помощью современных геофизических методов.

Достоверность научных положений, рекомендаций и выводов.

Достоверность и обоснованность научных положений, рекомендаций и выводов, предложенных в работе, подтверждены исследованиями, выполненными с применением современных методов и технических средств, а также практическими результатами внедрения теоретических положений и сопоставлением с данными других авторов.

Достоверность положений и выводов диссертационной работы подтверждена также патентами РФ и положительными результатами их внедрения на ряде строительных предприятий.

Научная новизна:

- разработаны теоретические положения повышения сейсмостойкости зданий и сооружений за счет использования мелкозернистых пропитанных бетонов, фибробетонов, шлакозолобетонов и безусадочных и расширяющихся бетонов на основе комплексного использования вторичного сырья;

- разработаны положения целенаправленного управления техническими, технологическими и эксплуатационными свойствами мелкозернистых бетонов для ремонта и восстановления конструкций с применением эффективных модификаторов;

- разработаны теоретические положения повышения сейсмостойкости мелкозернистых бетонов;

- установлены закономерности структурообразования мелкозернистых бетонов;

- установлены закономерности сцепления старого бетона с новым и омоноличивания контактной зоны;

- установлены многофакторные математические зависимости кинетики пропитки материалов;

- установлен механизм разрушения слоистых систем при механическом воздействии и действии окружающей среды;

- разработана методология оценки степени повреждений и состояния зданий и сооружений;

- впервые осуществлены экспериментальные исследования на реальных объектах с выключающимися связями, исследована динамическая жесткость конструктивных элементов системы сейсмической защиты;

- на основании экспериментальных исследований сформулированы рекомендации по усовершенствованию конструктивных решений системы сейсмозащиты;

- предложены теоретические расчетные модели и исследована задача определения сейсмической реакции зданий типа исследовавшихся в эксперименте, а также высоких зданий с выключающимися связями;

- выполнен параметрический анализ динамической реакции зданий с СТФ и ВС на сейсмические и ветровые воздействия;

- разработан алгоритм расчета, с учетом реальных акселерограмм, сооружений с выключающимися связями, расположенными в нижней части и по высоте здания;

- выполнен анализ статистического сочетания сейсмических и ветровых нагрузок применительно к зданиям с СТФ и ВС;

- разработана методика и выполнен расчет высокого здания с выключающимися связями, проектируемого с учетом сейсмических и ветровых воздействий.

Практическая значимость диссертационного исследования:

- получены мелкозернистые безусадочные и расширяющиеся бетоны, пропитанные бетоны, бетоны с дисперсным армированием и шлакозолобетоны для повышения сейсмостойкости зданий и сооружений;

- разработаны конструкции СТФ и ВС для повышения сейсмостойкости зданий и сооружений;

- предложена методика оценки степени повреждения зданий и сооружений;

- разработаны технические условия ТУ 5745-001-45267841-10 «Мелкозернистый ремонтный бетон класса В20 на основе портландцемента, кварцевого песка и органической добавки»;

- разработаны технические условия ТУ 5711-001-02066501-08 «Мелкозернистый бетон класса по прочности до В30-В45 на золошлаковых смесях, портландцементе и органоминеральной добавке»;

- разработана инструкция РДС РК-01-07-10 «Инструкция по проектированию зданий с использованием сейсмоизолирующих кинематических фундаментов»;

- получены патенты на сейсмоизолирующий тарельчатый фундамент (RU 2007146296 А), универсальный сейсмоизолирующий фундамент (RU 2406804 А) и др.

Апробация результатов исследования.

Разработанные составы, технологии и технические средства нашли применение при ремонте, восстановлении и реконструкции зданий и сооружений Чеченской Республики (ГУП «Чеченское управление строительства», ГУП «Чеченгражданстрой», ООО «Модернпроект» (генеральная проектная организация выполнения ФЦП «Социально-экономическое развитие ЧР на 2008-2012 гг.»), ПРСК «Лам», Сейсмофонд, ООО «СК «Чеченстрой», ООО «Интер­стройхолдинг», ЗАО «Внешторгсервис», ООО «Импексстрой»).

Результаты диссертационной работы внедрены и используются на объектах Министерства строительства ЧР, Министерства жилищно-коммунального хозяйства ЧР и УНР 328 Минобороны РФ.

Работа выполнялась в соответствии с федеральными целевыми программами «Сейсмобезопасность территории России» (2002-2010 гг.), «Восстановление экономики и социальной сферы Чеченской Республики на 2002 и последующие годы», «Социально-экономическое развитие Чеченской Республики на 2008-2011 гг.» и «Научные и научно-педагогические кадры инновационной России на 2009-2013 гг.».

Ориентировочные расчеты показали, что экономический эффект за десять лет составит 240-250 млн. руб. Получен также социальный эффект – экологи­ческое оздоровление окружающей среды за счет утилизации отходов.

Содержание и основные положения диссертационной работы докладывались с 1982 по 2010 гг. на всемирных, европейских, международных, всесоюзных и всероссийских научно-технических симпозиумах, конференциях, совещаниях и семинарах по проблемам сейсмостойкого строительства и сейсмостойких материалов, в том числе:

- на Всесоюзных, Всероссийских, региональных и республиканских конференциях (Алма-Ата – 1989 г., Москва – 1985 г., Махачкала – 1987, 2006, 2009 г., Симферополь – 1988 г., Ташкент – 1988 г., Владикавказ – 1992, 2005, 2007, 2009 г., Ростов-на-Дону – 2006 г., Сочи – 1997, 2001, 2005, 2007, 2008 г., Ялта – 2005 г.);

- на европейских конференциях по сейсмостойкому строительству (Москва – 1990 г., Париж – 1998 г., Лондон – 2002 г.);

- на всемирных конференциях по сейсмостойкому строительству (Мадрид – 1992 г., Акапулько – 1996 г., Ванкувер – 2004 г.);

- на международных конференциях (Анкара – 1997 г., Стамбул – 2006 г., Москва – 2008, 2009 г., Сочи – 2009 г., Владикавказ – 2009, 2010 г., Санкт-Петербург – 2010 г.).

Материалы диссертации опубликованы в 74 работах, в том числе 9 статьях в научных изданиях, рекомендованных ВАК для публикации основных результатов диссертационного исследования на соискание ученой степени доктора наук, 6 монографиях, 9 описаниях изобретений к патентам и учебном пособии с грифом УМО.

Структура и объем работы. Диссертация состоит из введения, девяти глав, основных выводов, списка литературы и приложений. Объем работы – 452 стр. машинописного текста, содержит 68 таблиц, 144 рисунка, список литературы включает 441 наименование.


2. КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

В первой главе «Анализ состояния проблемы» проведен анализ основных материалов, используемых для повышения сейсмостойкости зданий и сооружений, который показал, что традиционные методы ремонта и восстановления бетонных и железобетонных конструкций, применяемые в отечественной практике, сводятся, в основном, к наращиванию новых слоев бетона, созданию стальных или железобетонных обойм или полной замене конструкций, что, как правило, весьма трудоемко и не обеспечивает достижение поставленной в диссертационной работе цели. Изучены опыт повышения прочности материалов при немногочисленных повторных нагружениях, а также особенности поведения различных строительных материалов при сейсмических воздействиях.

Методы ремонта и усиления железобетонных конструкций с применением полимерных материалов, композиционных бетонов, мелкозернистых составов, фибробетонов, пропитанных бетонов, а также расширяющих и напрягающих составов более эффективны. Проведенный анализ позволил сделать вывод, что технологии их использования не достаточно отработаны, поэтому разработка и широкое применение технологичных и эффективных методов повышения сейсмостойкости конструкций зданий и сооружений является проблемой весьма важной и актуальной. Решению ее может в значительной степени содействовать использование различных современных материалов на основе мелкозернистых наполнителей.

В главе отмечается большой вклад в области исследования сейсмостойкости зданий и сооружений советских и российских ученых К.С. Завриева, А.Г. Назарова, В.А. Быховского, И.И. Гольденблата, И.Л. Корчинского, Ш.Г. Напе­тва­ридзе, Б.К. Карапетяна, Н.А. Николаенко, С.В. Полякова, В.Т. Рас­сказовского, О.О. Савинова, А.П. Синицина, Я.М. Айзенберга, Т.Ж. Жунусова, В.А. Ильичева, Ю.В. Измайлова, Э.Е. Хачияна, В.Д. Райзера, Г.Л. Коффа, А.Д. Абакарова, Т.А. Абаканова, К.С. Абдурашидова, Ф.Ф. Аптикаева, М.У. Ашимбаева, В.А. Бабешко, В.С. Беляева, Т.А. Белаш, К.В. Егупова, В.Б. Заалишвили, М.А. Клячко, Э.Н. Кодыша, П.А. Коновалова, Ю.П. Назарова, Ю.И. Немчинова, С.Х. Нигматуллаева, Т.Р. Рашидова, В.А. Ржевского, А.М. Уздина, А.М. Жарова, Г.В. Мамаевой, А.М. Мелентьева, В.И. Смирнова, И.Е. Ицкова, А.В. Перельмутера, В.И. Римшина, Л.Р. Ставницера, А.Г. Тяпина, В.И. Уломова, Ш.А. Хакимова, К.Ш. Шадунца, А.К. Юсупова, и др.

Значительные по объему экспериментальные и теоретические исследования различных видов сейсмоизоляции выполнялись в последние десятилетия В.В. Назиным, Ю.Д. Черепинским, С.В. Поляковым, Л.Ш. Килимником, Л.А. Солдатовой, А.Г. Яременко, А.М. Курзановым, С.Ю. Семеновым и др.

Проведенный анализ состояния исследования вопроса свидетельствует об актуальности проблемы разработки сейсмостойких строительных материалов и поиска рациональных динамических характеристик высоких зданий с сейсмоизолирующими тарельчатыми фундаментами и выключающимися связями (СТФ и ВС) в условиях вероятности возникновения воздействий с существенно различающимися характеристиками (сейсмические и ветровые воздействия).

Следует отметить в данной области работы А.В. Александрова, М.Г. Алишаева, В.О. Алмазова, Ю.М. Баженова, В.М. Бондаренко, М.М. Батдалова, Д.К.-С. Батаева, В.В. Болотина, Г.В. Василькова, Г.А. Гениева, Н.И. Карпенко, Б.А. Крылова, И.А. Иванова, В.А. Ивовича, Р.Л. Маиляна, Л.Р. Маиляна, С.И. Меркулова, С.-А.Ю. Муртазаева, И.Е. Путляева, М.З. Симонова, А.Ф. Смирнова, Н.Н. Стрелецкого, Н.Н. Складнева, Б.С. Расторгуева, П.А. Реквава, В.В. Ремнева, А.Г. Тамразяна, В.И. Травуша, В.П. Чиркова, Г.И. Шапиро, А.И. Цейтлина, М.А. Ахматова, П.Н. Курочки, Г.В. Несветаева, Л.В. Моргун, С.Х. Байрамукова, М.Ю. Беккиева, М.Н. Кокоева, Е.Н. Пересыпкина, Б.Г. Печеного, С.И. Полтавцева, В.А. Пшеничкиной, Ш.М. Рахимбаева, Т.А. Хежева, О.М. Устарханова, Г.Н. Хаджишалапова и др.

Во второй главе «Мелкозернистые бетоны для сейсмостойких конструкций» проведено исследование физико-механических свойств обычных мелкозернистых бетонов для ремонтно-восстановительных работ.

В данной главе изучена динамическая прочность мелкозернистых бетонов, а также выносливость бетона при динамических воздействиях. Исследовано влияние технологических факторов на выносливость бетона: выносливость обычного бетона, выносливость мелкозернистого бетона и сопротивление мелкозернистого бетона сейсмическим нагрузкам.

Разработан экспериментальный стенд для проведения исследований и испытаний материалов и фрагментов зданий и сооружений на ударные воздействия. Исследован удар как процесс, имеющий комплексный характер воздействия. Кинематическая схема и общий вид стенда представлены на рисунке 1.

В данной главе мелкозернистый бетон рассмотрен как наиболее рациональный бетон для ремонта и восстановления конструкций. Поэтому проблема целенаправленного управления технологическими и эксплуатационными свойствами мелкозернистых бетонов для ремонта и восстановления конструкций путем применения новых эффективных модификаторов приобретает с каждым годом все большую актуальность.

Обоснована возможность широкого регулирования свойств мелкозернистых бетонов в соответствии с требованиями ремонта и восстановления конструкций.

Проведенные исследования стойкости мелкозернистых бетонов позволили сделать следующий вывод: мелкозернистые бетоны с добавкой ПАВ обладают высокими эксплуатационными свойствами и наиболее приемлемы для использования при ремонте и восстановлении бетонных и железобетонных конструкций.

При использовании метода механохимической активации вяжущего и наполнителя можно значительно повысить эффективность химической добавки. Нами установлено, что мелкозернистый бетон, приготовленный на многокомпонентном вяжущем при одном и том же расходе цемента, имеет более высокие значения прочности (в том числе прочность на изгиб и растяжение), морозостойкости и водонепроницаемости, а так же пониженное приведенное удлинение. Эти свойства приобретают особую актуальность при восстановлении конструкций с целью повышения их сейсмостойкости.

Анализ данных при исследовании структурообразования мелкозернистого бетона показал, что введение ПАВ увеличивает период формирования структуры мелкозернистого бетона на 3,5-4,0 часа, что связано с замедлением процесса гидратации цемента в начальный период твердения.

а)




б)




Рисунок 1 – Экспериментальный стенд для исследования прочностных
характеристик сейсмостойких строительных материалов:


а – кинематическая схема (1зарядное устройство , 2 – цилиндр, 3 – поршень, 4 – молот, 5 –направляющие, 6 – редуктор, 7 – электронный секундомер, 8 – датчики, 9 – ударник, 10 – испытываемый образец); б – общий вид

При формировании структуры мелкозернистого бетона и ее последующем твердении изменяется прочность, пористость, тепловыделение, электропроводность и другие свойства, которые сопровождаются объемными изменениями. В зависимости от условий твердения мелкозернистый бетон может либо увеличиваться, либо уменьшаться в объеме. Эти изменения значительны на первоначальном этапе формирования структуры и постепенно затухают во времени. Данное обстоятельство необходимо учитывать при назначении режимов ТВО и при разработке технологии ремонта и восстановления конструкций, изделий и деталей из мелкозернистого бетона и железобетона.

Важное значение при ремонте имеет сцепление старого и нового бетона. Для улучшения сцепления необходимо применять специальные технологии. Прочность сцепления нового и старого бетона, как правило, ниже прочности при растяжении сплошного бетона. Обычно она составляет 30-70% от прочности сплошного бетона. Величина сцепления зависит от подготовки поверхности, структуры старого и нового бетона, использованных материалов, состава бетона, кинетики твердения и ряда других факторов.

Однако, при применении специальных технологий возможно повышение прочности сцепления и получение шва более прочного, чем прочность бетона при растяжении. В этом случае разрушение происходит не по шву, а по слоям бетона, прилегающих к шву. Причем разрушение может происходить как по старому, так и по новому бетону, в зависимости от того, у которого из них ниже прочность при растяжении. Для обеспечения слитной работы старых и новых слоев конструкции целесообразно проведение пропитки старых ослабленных слоев специальными составами, применение слоистых швов (с промежуточным упрочняющим слоем) и специальной технологии производства ремонтных работ.

Для оптимального решения задач ремонта бетонных и железобетонных конструкций необходимо управлять деформативными свойствами бетона и сравнительно точно прогнозировать их численные показатели. Поскольку деформации зависят от вида используемых материалов, вида и дозировки специальных добавок, состава бетона и ряда других факторов, прогнозирование свойств нового бетона проводится способами компьютерного моделирования.

Проведенные исследования показали, что для подготовки сейсмостойкой структуры строительных композитов и бетонов наиболее эффективно применение пропитки.

В третьей главе «Исследование и разработка составов специальных мелкозернистых бетонов для сейсмостойких конструкций» разработаны и исследованы мелкозернистые бетоны для повышения сейсмостойкости зданий и сооружений (на основе новых видов цемента).

Среди новых видов цемента большой научный интерес и практическое значение приобрели расширяющиеся и безусадочные цементы. Для них характерно равномерное, происходящее в раннем возрасте расширение, которое компенсирует последующую их усадку, благодаря чему решается одна из сложных проблем в области бетоноведения – предотвращение отрицательных усадочных деформаций, что позволяет с успехом использовать их при ремонте и восстановлении бетонных и железобетонных конструкций, особенно, при заделке раковин, выбоин, сколов, сквозных пробойных отверстий, трещин и т.д.

Применение расширяющей добавки позволило нам получить мелкозернистые бетоны с заданными деформативными свойствами, что очень важно для восстановления сейсмостойкости конструкций. При увеличении дозировки расширяющей добавки увеличивается степень расширения бетона и компенсируется его усадка. При применении суперпластификатора совместно с расширяющей добавкой увеличивается степень расширения бетонов. В работе установлено, что введение суперпластификатора с расширяющей добавкой повышает прочность мелкозернистого бетона. Это связано со снижением водосодержания и, соответственно, снижением пустотности и повышением плотности бетона.

Современное строительство, ремонт и реконструкция зданий и сооружений выдвигают особые требования к их надежности при сейсмических воздействиях, и тем самым инициируют разработку новых составов и технологий бетона повышенной сеймостойкости. Хорошо себя зарекомендовали пропитанные мелкозернистые бетоны.

В диссертационной работе предложен новый пропиточный материал: отстои технических растительных масел (ОТРМ). Растительные масла получают из растений прессованием или экстракцией растворителями. Получаемые сырые масла содержат примеси (свободные жирные кислоты, красящие вещества). Эти примеси состоят из фосфатидов, слизи и различных механических загрязнений. Фосфатиды и слизи гидрофильны и снижают водостойкость покрытия. Свободные жирные кислоты и продукты их распада снижают скорость высыхания покрытий и ухудшают их исходные свойства.

Большинству требований, предъявляемых к пропиточным составам, удовлетворяют ОТРМ, относящиеся к группе высыхающих. Вязкость ОТРМ резко снижается при температуре 130-1400С, а отвердение наиболее интенсивно при температуре до 2000С.

В данном случае для повышения степени пропитки бетонов ОТРМ возможно применение метода «самовакуумирования». Степень заполнения пор бетона пропиточным составом зависит также от размера его молекул. Для ММА, размер молекул которого составляет 10-20 мкм, степень заполнения пор – около 75%. В случае применения ОТРМ степень заполнения составляет 40-50%.

Так как отвердевшие ОТРМ имеет невысокую прочность, то более эффективно использовать их для повышения стойкости бетонов.

В процессе экспериментальных исследований пропитанных мелкозернистых бетонов определяли количество поглощенного масла, прочность при сжатии и водопоглощение.

Проведенные в диссертационной работе исследования выявили, что пропитка бетона растительным маслом повышает прочность в 1,2-1,3 раза. Объем масла, поглощенного бетоном, уменьшается с увеличением расхода заполнителя в бетоне. Введение в цементный камень заполнителя приводит к образованию так называемой «дефектной» пористости контактного слоя между цементным камнем и зернами заполнителя. Причем объем «дефектных» пор в бетоне тем больше, чем выше концентрация заполнителя и его удельная поверхность. Размер этих пор превышает 50∙10-4 см, поэтому они, по указанным выше причинам, заполняются не полностью.

Коэффициент насыщения бетона при увеличении водоцементного отношения (В/Ц) также возрастает. Это можно объяснить возрастанием доли мелких пор вследствие более высокой степени гидратации цемента. Очевидно, что решающую роль в данном случае играет прочность бетонной матрицы, которая снижается при увеличении В/Ц бетонной смеси.

В результате выполненных исследований было выявлено, что долговечность модифицированных мелкозернистых бетонов зависит от структуры исходного бетона и глубины пропитки.

Проведенными в диссертационной работе экспериментальными исследованиями установлено влияние на морозостойкость бетона деформаций, возникающих в результате физических процессов в его скелете вследствие изменений температуры, влажности, фазовых переходов воды, находящейся в порах бетона. Деформации отрицательно влияют на совместную работу старого и нового бетона, на адгезию нового бетона со старым при производстве ремонтно-восстановительных работ.

Мелкозернистый бетон с дисперсным армированием может быть эффективно использован для повышения сейсмостойкости бетонных и железобетонных конструкций, т.к. он характеризуется рядом преимуществ:

- повышенные трещиностойкость, ударная вязкость, износостойкость, морозостойкость и огнестойкость;

- возможность реализации эффективных конструктивных решений при ремонте и восстановлении сложных по строению и структуре строительных конструкций;

- возможность применения новых, более производительных приемов формования ремонтируемых конструкций: пневмонабрызг; метод прогиба свежеотформованных листовых изделий; локальное прессование и др.

Использование волокон в качестве арматуры с целью преодоления недостаточной прочности при растяжении и изгибе бетонных материалов может эффективно применяться для получения ремонтных бетонов.

Мелкозернистые дисперсно-армированные бетоны являются типичными ремонтными материалами с характерными для них особенностями и свойствами. Обычно в таких материалах сочетаются, обладающая сравнительно небольшой прочностью при растяжении пластичная матрица и характеризующиеся значительными сопротивлениями разрыву и более высоким по сравнению с матрицей модулем упругости тонкие волокна, рассредоточиваемые с направленной или произвольной ориентацией в объеме матрицы.

Процесс твердения бетона сопровождается изменением его объема. Это происходит в результате происходящих физико-химических процессов и вызывает усадку бетона. Величина усадки бетона зависит от состава и свойств использованных материалов. Усадка вызывает растрескивание бетона, а эффективная мера против растрескивания – использование фибр. Наиболее рациональной фиброй является стекловолокно. Стекловолокно (фибра) изготавливается диаметром 5-15 мм с пределом прочности на растяжение 1000-4000 МПа.

Стеклофибробетон, имеющий ряд преимуществ (повышенная прочность на растяжение и изгиб, высокие трещиностойкость, ударная прочность, морозостойкость, водонепроницаемость, огнестойкость и износостойкость), наиболее приемлем для повышения сейсмостойкости бетонных и железобетонных конструкций. Выполненные в работе исследования показали, что при армировании бетона щелочестойким волокном прочность на изгиб возрастает в 4-5 раз, на осевое растяжение в 3-4 раза, а ударная прочность в 10-15 раз больше по сравнению с обычным бетоном.

Основные физико-механические показатели мелкозернистого стеклофибробетона на основе портландцемента М400 с содержанием стекловолокна до 3,5% приведены в таблице 1. Физико-механические свойства стеклофибробетона зависят не только от состава бетонной смеси, но и от технологии изготовления.

Применение стеклофибры дало 20% увеличение прочности на изгиб по сравнению с обычным бетоном. Это является подтверждением того, что фибры являются эффективным средством улучшения поведения при трещинообразовании и повышения прочности на изгиб.
Таблица 1 – Основные физико-механические показатели мелкозернистого
стеклофибробетона

Наименование показателя

Ед. измерения

Величина

Предел прочности при изгибе

МПа

17-20

Предел прочности при растяжении

- - - - - -

4,5-5,5

Предел прочности при сжатии

- - - - - -

35-45

Ударная вязкость

Дж/м2

10-12

Предельная растяжимость

%

0,07-0,09

Линейная деформация

%

0,2-0,4

Морозостойкость

цикл

150-200
  1   2   3   4   5   6

Добавить в свой блог или на сайт

Похожие:

Материалы и конструкции для повышения сейсмостойкости зданий и сооружений (Системный подход) iconПрограмма кандидатского экзамена по специальности 05. 23. 01 «Строительные конструкции, здания и сооружения» по техническим наукам
В основу настоящей программы положены следующие дисциплины: строительная механика, металлические конструкции, конструкции из дерева...

Материалы и конструкции для повышения сейсмостойкости зданий и сооружений (Системный подход) iconПрограмма-минимум кандидатского экзамена по специальности 05. 23. 01 «Строительные конструкции, здания и сооружения» по техническим наукам
В основу настоящей программы положены следующие дисциплины: строительная механика, металлические конструкции, конструкции из дерева...

Материалы и конструкции для повышения сейсмостойкости зданий и сооружений (Системный подход) iconПрограмма-минимум кандидатского экзамена по специальности
В основу настоящей программы положены следующие дисциплины: строительная механика, металлические конструкции, конструкции из дерева...

Материалы и конструкции для повышения сейсмостойкости зданий и сооружений (Системный подход) iconПрограмма-минимум кандидатского экзамена по специальности
В основу настоящей программы положены следующие дисциплины: строительная механика, металлические конструкции, конструкции из дерева...

Материалы и конструкции для повышения сейсмостойкости зданий и сооружений (Системный подход) iconОбоснование уровня расчетного сейсмического воздействия при оценке сейсмостойкости зданий и сооружений, эксплуатируемых в особых условиях
Обоснование уровня расчетного сейсмического воздействия при оценке сейсмостойкости зданий и сооружений

Материалы и конструкции для повышения сейсмостойкости зданий и сооружений (Системный подход) iconГосударственные строительные нормы украины конструкции зданий и сооружений. Покрытия зданий и сооружений дбн в 6-14-97 Том 1, 2 и 3
Изменением №1, утвержденным приказом Госстроя Украины от 01. 10. 99 г. №237 и введенным в действие с 1 января 2000 года

Материалы и конструкции для повышения сейсмостойкости зданий и сооружений (Системный подход) iconГосударственные строительные нормы украины конструкции зданий и сооружений. Покрытия зданий и сооружений дбн в 6-14-97 Том 1, 2 и 3
Изменением №1, утвержденным приказом Госстроя Украины от 01. 10. 99 г. №237 и введенным в действие с 1 января 2000 года

Материалы и конструкции для повышения сейсмостойкости зданий и сооружений (Системный подход) iconПрограмма вступительного экзамена в аспирантуру по научной специальности
Основные конструктивные элементы зданий и сооружений. Конструктивные схемы гражданских и промышленных зданий. Сооружения специального...

Материалы и конструкции для повышения сейсмостойкости зданий и сооружений (Системный подход) iconУчебно-тематическии план и программа обучения специалистов строительного комплекса на курсах повышения квалификации по направлению проектирование зданий и сооружений
Цель обучения: ознакомить слушателей курсов повышения квалификации с новейшими положениями проектирования зданий и сооружений и опытом...

Материалы и конструкции для повышения сейсмостойкости зданий и сооружений (Системный подход) iconИзучаемая программа «Предпринимательская деятельность в сфере недвижимости» Код 41 345
Строительные конструкции, несущие и ограждающие конструкции зданий и сооружений


Разместите кнопку на своём сайте:
lib.convdocs.org


База данных защищена авторским правом ©lib.convdocs.org 2012
обратиться к администрации
lib.convdocs.org
Главная страница