Факультативный курс «задачи для подготовки к олимпиадам по математике учащихся 5-6 классов» Составила: учитель математики




НазваниеФакультативный курс «задачи для подготовки к олимпиадам по математике учащихся 5-6 классов» Составила: учитель математики
страница7/9
Дата конвертации28.04.2013
Размер0.97 Mb.
ТипПрограмма курса
1   2   3   4   5   6   7   8   9
6 класс


Задача 1

Длина ребра куба – 0,5 м. Этот куб разрезали на кубики, длина ребра каждого из которых равна 2 мм. Затем кубики уложили в один сплошной ряд. Чему равна его длина?

Решение.

Так как 0,5 м = 50 см = 500 мм, то грань можно разрезать на 500 : 2 = 250 (частей). Разрезав, таким образом куб в трех плоскостях, получим 250 * 250 * 250 = 15 625 000. Так как длина ребра кубика равна 2 мм, то длина ряда будет 15 625 000 * 2 мм = 31 250 000 мм = 31,25 км.

Ответ: 31,25 км.

Задача 2

Участок, засаженный клубникой, имеет форму прямоугольника, длина которого в 3 раза больше ширины. Участок окружен оградой, которая отстоит от сторон участка на 2 м. Площадь, ограниченная оградой, на 128 м2 больше площади самого участка. Определите длину ограды.

Решение.

Рассмотрим арифметический способ решения задачи. Пусть ABCD – участок под клубникой, AB = х, BD = 3х (рис. ).






х

х

х




х

A

B







D

C



















1) 2 * 2 = 4 (м2) – площадь каждого из заштрихованных квадратов.

2) 4 * 4 = 16 (м2) – площадь четырех угловых заштрихованных квадратов.

3) 128 – 16 = 112 (м2) – площадь оставшейся части участка внутри ограды (без угловых квадратов, см. рис. 64), она представляет собой 8 прямоугольников с шириной 2 м и длиной х.

4) 112 : 8 = 14 (м2) – площадь одного из прямоугольников.

5) х = 14 : 2 = 7 (м) – длина этого прямоугольника, эта же ширина участка, занятого клубникой.

6) 7 * 3 = 21 (м) – длина участка, занятого клубникой.

7) 7 + 2 + 2 = 11 (м) – длина меньшей стороны ограды.

8) 21 + 2 + 2 = 25 (м) – длина большей стороны ограды.

9) (11 + 25) * 2 = 72 (м) – длина всей ограды

Ответ: 72 м.


Задача 3

На рис. имеется квадрат со стороной 1. Из двух противоположных вершин квадрата проведено две дуги так, как показано на рисунке. Найдите площадь заштрихованной фигуры.


Решение.

Площадь четверти круга с радиусом 1 равна π/4. Тогда площадь квадрата без четверти данного круга будет равна 1 - π/4. Площадь двух таких частей равна 2 - π/2. Тогда площадь заштрихованной части равняется разности площади квадрата и площади данных двух частей, то есть

1 – (2 - π/2) = π/2 – 1.

Ответ: π/2 – 1.


Задача 4

Можно ли из фигурок, изображенных на рис., сложить квадрат? Фигурки можно брать в неограниченном количестве.



















Решение.

Из данных фигурок сначала можно сложить прямоугольник 2х5, как показано слева на рис., а затем, из 10 прямоугольников 2х5 сложить квадрат 10х10, он изображен на рисунке справа



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Задача 5

На каждой стороне квадрата со стороной 1 построено по полуокружности, как показано на рис. Найдите площадь заштрихованной части (четырех лепестков).


Решение.

Площадь круга с радиусом, равным 1/2, будет равна π/4, а полукруга с этим же радиусом - π/8. Тогда площадь двух таких полукругов будет равна π/4. Так как площадь квадрата равна 1, то площадь двух не заштрихованных участков квадрата будет равна 1 - π/4. Значит, площадь четырех не заштрихованных участков будет равна 2 - π/2. Поэтому площадь заштрихованных участков будет равна

1 – ( 2 - π/2) = π/2 – 1.

Ответ: π/2 – 1


Задача 6

С центром в вершинах квадрата проведено 4 дуги. Также проведена окружность с центром в середине квадрата. Найдите площадь заштрихованной фигуры на рис., если сторона квадрата равна 1.


Решение.

Найдем сначала площадь четверти круга с радиусом, равным 1/2, она будет равна π/16. Тогда площадь 4 таких четвертей будет равна π/4. Значит, площадь оставшейся части квадрата равна 1 - π/4. Заштрихованная фигура представляет собой разность круга и этой части. Тогда ее площадь будет равна

π/4 – ( 1 - π/4) = π/2 – 1.


Ответ: π/2 – 1


Задачи на свойства неопределяемых геометрических понятий


Задача 1

Точки А, В и С лежат на прямой а. Есть ли среди прямых АВ, АС и ВС различные? Объясните ответ.

Решение.

Используя аксиому прямой, делаем вывод о том, что прямые АВ, АС и ВС совпадают.


Задача 2

Начертите три прямые АВ, ВС, АС. На сколько частей разбивается этими прямыми плоскость?

Ответ: на семь частей


Задача 3

Даны а1 и а2 – различные прямые. Точка Р принадлежит а1 и а2. Точка О также принадлежит а1 и а2. Что можно сказать о точках Р и О? Какая аксиома или теорема подтверждает ваше заключение?

Ответ: точки Р и О лежат на одной прямой.


Задача 4

Приведите пример трех прямых, каждые две из которых скрещиваются. Сколько можно построить прямых, каждые 2 из которых будут скрещиваться?

Ответ: бесконечное множество.


Задача 5

Существуют ли две параллельные прямые, каждая из которых пересекает две данные скрещивающиеся прямые?

Ответ: не существует


Задача 6

Прямые a и b параллельны. Прямая a скрещивается с прямой с. Что можно сказать о взаимном расположении прямых b и c?

Ответ: прямые b и c скрещиваются


Задача 7

Прямые a и b пересекаются. Прямая a скрещивается с прямой с. Что можно сказать о взаимном расположении прямых b и c?

Ответ: прямые b и c могут быть параллельны.


Задача 8

Прямая l1 не принадлежит а и пересекает плоскость а в точке Р. Прямая l2 принадлежит плоскости а, но не содержит точку Р. Может ли прямая l1 пересекать прямую l2? Объясните ваш ответ.

Ответ: прямые l1 и l2 скрещивающиеся.


Задача 9

У какого многогранника имеется наименьшее число граней (частей плоскостей)?

Ответ: у треугольной пирамиды четыре грани.


Задача 10

Может ли многогранник иметь только две параллельные грани (части плоскости)?

Ответ: может


Задача 11

Докажите, что две различные плоскости не могут иметь две и только две общие точки

Ответ: прямая, проходящая через две точки, принадлежащие к каждой из рассматриваемых плоскостей, будет целиком лежать в каждой из этих плоскостей (по аксиоме прямой к плоскости). Следовательно, если две различные плоскости имеют две общие точки, то они имеют и общую прямую, проходящую через эти точки.


Задачи на общие представления о геометрических фигурах


Задача 1

Какие фигуры могут получиться при пересечении двух четырехугольников? Возможно ли, чтобы при пересечении двух четырехугольников образовались два четырехугольника? Три четырехугольника?

Ответ: при пересечении двух произвольных четырехугольников может получиться:

Точка

Отрезок

Треугольник

Четырехугольник

Пятиугольник

Шестиугольник


Задача 2

Приведите примеры одинаковых геометрических фигур которые имеют: а) только одну общую точку; б) бесконечное множество общих точек, не лежащих на одной прямой; в) только одну общую прямую (при этом фигуры не являются плоскостями); г)ровно одну общую плоскость

Ответ: а) Два одинаковых треугольника, имеющих одну общую точку (можно рассмотреть взаимное расположение треугольников в разных плоскостях); б) Пересечение двух пространственных фигур, например, двух кубов, когда пересечение происходит по граням; в) Две полуплоскости с общей границей.


Задача 3

Деревянный куб снаружи покрасили белой краской , каждое его ребро разделили на 3 (4, 5) равные части, после чего куб разрезали так, что получились маленькие кубики, у у которых ребра в 3 (4, 5) раза меньше, чем у исходного куба. Сколько получилось маленьких кубиков? У скольких кубиков окрашены три грани? Только одна грань? Сколько получилось неокрашенных кубиков?

Ответ: например, при n=4 всего 64 кубика: 8 - неокрашенных, 8 – с тремя окрашенными гранями, 24 – с двумя окрашенными гранями и 24 – с одной окрашенной гранью.


Задача 4

На какое наибольшее число различных частей, не имеющих общих точек, кроме своих границ, могут разбить плоскость: а) прямая и окружность; б) три прямые; в) угол и окружность; г) три окружности?

Ответ: а) 4; б) 7; в) 6; г) 8


Задача 5

Какие n-угольники можно получить как общую часть: а)угла и полуплоскости; б)двух углов; в) двух треугольников; г) треугольника и четырехугольника?

Ответ: а) Треугольник; б) Треугольник, четырехугольник; в) Треугольник, четырехугольник, пятиугольник, шестиугольник; г) Треугольник, четырехугольник, пятиугольник, шестиугольник, семиугольник.


Задача 6

Изобразите куб, у которого видны: а) передняя, правая и верхняя грани; б) передняя, левая и верхняя грани.


Задачи на отрезки и их измерение


Задача 1

Докажите, что если две точки отрезка АВ принадлежат отрезку CD, то эти отрезки лежат на одной прямой.

Ответ: доказательство следует из аксиомы прямой.


Задача 2

Назовите ( изобразите ) многогранник, имеющий наименьшее число ребер. Сколько у него вершин? Граней?

Ответ: треугольная пирамида


Задача 3

Пусть Р, К, М – три точки некоторой прямой. Какая из этих точек лежит между двумя другими, если РК =12, РМ =7 и КМ =5? Обоснуйте вывод.

Ответ: точка М лежит между точками Р и К.


Задача 4

Иванов мчался на своей машине по шоссе с постоянной скоростью. Рядом с ним сидела его дочь. «Ты заметила,- спросил он,- что деревья вдоль шоссе посажены на одинаковом расстоянии друг от друга? Хотелось бы знать, на каком именно?»

Дочь посмотрела на часы и сосчитала, сколько деревьев промелькнуло за окном в течение одной минуты.

«Какое странное совпадение! – воскликнул Иванов. – Если это число умножить на 10, то получится в точности численное значение скорости нашей машины в километрах в час.

Предположим, что скорость машины постоянна, деревья посажены через одинаковые промежутки, а минута, отмеренная дочкой, начинается и кончается в моменты, когда машина находится как раз посреди расстояния, отдаляющего одно дерево от другого. Спрашивается, чему равно это расстояние?

Решение.

Самое интересное в задаче то, что для ответа не нужно знать скорость машины.

Пусть х- число деревьев, промелькнувших в течение одной минуты.

За час машина проедет мимо 60х деревьев.

Скорость машины, как известно из условия задачи, равна 10х км/ч.

Проезжая расстояние в 10х км, машина проедет мимо 60х деревьев, следовательно, на расстоянии 1 км она проедет мимо 60х/10х, или 6 деревьев.

Это и означает, что расстояние между деревьями равно 1/6.

Ответ: 1/6


Задача 5

Расстояние от деревни А до деревни В по шоссе равно 3 км. В деревне А 100 школьников, в деревне В 50 школьников. На каком расстоянии от деревни А надо построить школу, чтобы общее расстояние, которое придется пройти всем 150 школьникам, было наименьшим?

Ответ: школу надо построить в деревне А.


Задача 6

На расстоянии 5м друг от друга посажены в один ряд 5 деревьев. Чему равно расстояние между крайними деревьями? Толщину деревьев не учитывать.

Ответ: 20 м.


Задача 7

Для предстоящего ремонта вдоль железной дороги длиной 10 км выложены рельсы, каждая из которых имеет длину 10м. Рельсы выложены так, что между ними нет промежутков (и некоторые из них могут накладываться друг на друга). Какое наибольшее число рельсов может лежать вдоль дороги. Если известно, что промежуток между рельсами немедленно возникает, если убрать любой рельс?

Ответ: 1998 рельсов.


Задача 8

Петя живет на 16 этаже, а Коля - на четвертом. Во сколько раз больше, чем Коле, необходимо пройти ступенек Пете?

Решение.

Чтобы подняться на четвертый этаж, надо пройти 3 этажа.

Чтобы подняться на шестнадцатый этаж, надо пройти 15 этажей.

В 5 раз надо пройти Пете больше, чем Коле.

Ответ: в 5 раз.


Задача 9

Пете необходимо пройти в 4 раза больше ступенек, чем Коле. Коля живет на третьем этаже. На каком этаже живет Петя?

Решение.

Поскольку Пете необходимо пройти в 4 раза больше ступенек, значит, ему нужно пройти: 4*3 = 12 этажей.

Первые три этажа мы учли дважды, значит, 12 этажей – 3 этажа = 9 этажей.

Ответ: 9.


Задачи на понятие ломаной и ее длины


Задача 1

Дан куб ABCDA1B1C1D1. Как из точки А, следуя вдоль ребер, можно попасть в точку С1, не проходя два раза через одну и туже вершину?

Ответ: всего 12 ломаных.


Задача 2

О некоторой ломаной известно: а)она замкнутая; б) каждое своё звено она пересекает один раз; в) у нее 6 звеньев. Есть ли противоречия в этих данных? Если есть, то какое изменение нужно внести в исходную информацию, чтобы избежать противоречия?

Ответ: противоречие есть. Изменить нужно второе и третье условия, каждое звено должно пересекаться два раза и ломаная должна иметь 5 звеньев.


Задача 3

Сможете ли вы сделать из гибкой проволоки замкнутую пятизвенную ломаную, имеющую:

Одну точку самопересечения

Две точки самопересечения

Три точки пересечения

Четыре точки пересечения

Пять точек пересечения?

Ответ: а-в) Да; г) нет; д) да.


Задача 4

Какое наибольшее число точек самопересечения может быть у замкнутой ломаной из 5 звеньев? Из 7 звеньев? из любого нечетного числа звеньев? А если ломаная будет незамкнутой, изменится ли результат? Попробуйте решить задачу для ломаной у которой четное число звеньев.

Решение.

У замкнутой ломаной из 5 звеньев будет 5 точек самопересечения, у семизвенной ломаной -14 точек, у ломаной с четным числом звеньев -2п. Если она замкнутая, то точек самопересечения будет столько же, что и для незамкнутой ломаной с числом звеньев 2п-1 (последнее звено данных точек не дает); для незамкнутой ломаной число точек определяется тем же способом, что и раньше.


Задача 5

Какое максимальное количество точек самопересечения может иметь замкнутая п-звенная плоская ломаная, если: а) п нечетно; б) п четно? (Предполагается, что никакие три вершины не лежат на одной прямой и что никакие три звена не пересекаются в одной точке.)

Ответ: а) п*(п-3); б) п*(п-4) + 1.


1   2   3   4   5   6   7   8   9

Похожие:

Факультативный курс «задачи для подготовки к олимпиадам по математике учащихся 5-6 классов» Составила: учитель математики icon«Очные подготовительные курсы для подготовки учащихся 10-11 классов к Олимпиадам рггу для школьников 11 классов»
Ле, психологической, школьников к участию в подобного вида сложных творческих испытаниях, что делает необходимым формирование специализированной...

Факультативный курс «задачи для подготовки к олимпиадам по математике учащихся 5-6 классов» Составила: учитель математики iconЭлективный курс. Предпрофиль Вся жизнь в задачах Составила: учитель математики Янцен Ирина Вальтеровна 2010 год
Данный элективный курс «Вся жизнь в задачах» рассчитан на 14 часов и предназначен для предпрофильной подготовки учащихся 9 класса....

Факультативный курс «задачи для подготовки к олимпиадам по математике учащихся 5-6 классов» Составила: учитель математики iconПрограмма учебного предмета «Математика» для 10 класса, рассчитана на 35 часов, вводится с целью расширения и углубленного изучения отдельных разделов основного курса математики и
Егэ. Предназначена для повышения эффективности подготовки учащихся 10 классов к государственной (итоговой) аттестации по математике...

Факультативный курс «задачи для подготовки к олимпиадам по математике учащихся 5-6 классов» Составила: учитель математики iconУчебное пособие «Методика решения задач по химии» для учащихся 8-11 классов. Составила учитель химии Монич Т. П., лицей №40
«Методика решения задач по химии» для учащихся 8-11 классов. Составила учитель химии Монич Т. П., лицей №40

Факультативный курс «задачи для подготовки к олимпиадам по математике учащихся 5-6 классов» Составила: учитель математики iconПрограмма По углублению некоторых вопросов русского языка и математике для учащихся 4 классов (на основе знаний и программы начальных классов)
Учебный план курсов по углубленному изучению некоторых вопросов русского языка и математики для учащихся 4 классов

Факультативный курс «задачи для подготовки к олимпиадам по математике учащихся 5-6 классов» Составила: учитель математики iconМетодическое пособие для учащихся общеобразовательных классов. Составила учитель оивт
Разобранные алгоритмы можно использовать для составления более сложных программ. В пособии содержатся задачи для самостоятельной...

Факультативный курс «задачи для подготовки к олимпиадам по математике учащихся 5-6 классов» Составила: учитель математики iconПрограмма курсов по выбору предпрофильной подготовки для учащихся 9-х классов (17 часов)
Данный ориентационный курс предпрофильной подготовки учащихся 9-х классов входит в образовательную область «Естествознание»

Факультативный курс «задачи для подготовки к олимпиадам по математике учащихся 5-6 классов» Составила: учитель математики iconПрограмма дополнительного образования объединения
Большие возможности для развития интереса учащихся к математике имеют задачи. Научив детей владеть умением решать текстовые задачи,...

Факультативный курс «задачи для подготовки к олимпиадам по математике учащихся 5-6 классов» Составила: учитель математики iconПрограмма элективного курса по физике Тема: «Многоликие задачи»
Элективный курс «Многоликие задачи» предназначен для профильной подготовки учащихся 10-х классов. Содержание данного курса рассчитано...

Факультативный курс «задачи для подготовки к олимпиадам по математике учащихся 5-6 классов» Составила: учитель математики iconПрограмма факультатива Номинация Программы факультативов (для детей 5-9-х классов)
Факультативный курс «Математический калейдоскоп» рассчитан на 34 часа и предназначен для обучающихся 7-8 классов общеобразовательных...


Разместите кнопку на своём сайте:
lib.convdocs.org


База данных защищена авторским правом ©lib.convdocs.org 2012
обратиться к администрации
lib.convdocs.org
Главная страница