Углеводы Издательство "Наука"




НазваниеУглеводы Издательство "Наука"
страница1/15
Дата конвертации13.05.2013
Размер1.88 Mb.
ТипДокументы
  1   2   3   4   5   6   7   8   9   ...   15




Академия наук СССР

Серия "Наука и технический прогресс"


А.Н.Бочков

В.А.Афанасьев

Г.Е.Заиков


Углеводы


Издательство "Наука"

Москва, 1980

Предисловие


Углеводы, или сахара, представляют собой обширный класс природных органических соединений, составляющих основную массу органического вещества нашей планеты. С представителями углеводов человек сталкивается в самых различных областях своей деятельности и при изучении самых различных живых объектов. Только по химии углеводов (не считая биохимии) сейчас публикуется в среднем полторы-две тысячи работ в год. Охватить этот материал в рамках небольшой книги, разумеется, невозможно. Мы сконцентрируем внимание на фундаментальных вопросах структуры углеродных молекул и лишь очень кратко остановимся на синтетических проблемах этой области, так как синтезу будет посвящена специальная книга. Наша задача - кратко описать современное состояние исследований в области углеводов. В понятие "современное состояние" мы вкладываем не только и не столько самоновейшие сведения и методы исследования, а в первую очередь сегодняшнее понимание этой области, ее, так сказать, современную идеологию. А она весьма нетривиальна и во многом отличается, например, от идеологии химии белка. Как мы дальше увидим, даже такое фундаментальное химическое понятие, как понятие об индивидуальном веществе, имеет различный смысл для белков и полисахаридов. Мы попытаемся дать читателю почувствовать современную логику мышления исследователей в этой очень своеобразной и увлекательной области биоорганической химии.

Эта книга написана с химиками. Поэтому весь материал рассматривается в ней с органо-химических позиций, т.е. представлен в терминах молекулярных структур и конформаций. Иными словами, здесь преимущественно описана химия углеводов. С другой стороны, углеводы - это прежде всего компоненты живых систем, и рассматривать

их структуры и свойства, а также логику развития исследований в этой области в отрыве от их биологической роли, было бы глубоко неправильно. Поэтому авторы все-таки попытались выборочно и в основном иллюстративно охарактеризовать роль углеводных структур в живых системах.

Авторы выражают глубокую признательность А.И.Усову и Т.Н.Дружининой, прочитавшим книгу в рукописи и сделавшим ряд ценных замечаний, а также М.И.Арцис и С.Н.Сенчековой за помощь при подготовке рукописи к печати.

Глава 1

Струтуры


Что это такое?


Как известно, полноценная пища для человека должна включать белки, жиры, углеводы, витамины и микроэлементы. Главные углеводные компоненты пищи - это крахмал, сахароза, глюкоза, фруктоза. Целлюлозная промышленность со всеми ее многочисленными ответвлениями производит и утилизирует другой представитель класса углеводов: высокомолекулярный полисахарид - целлюлозу. Что общего между несъедобной целлюлозой и крахмалом?

Наша звездная система называется Галактикой. Есть ли что-либо общее этим названием и моносахаридом галактозой? Вспомним: Галактика - Млечный путь - молоко - молочный сахар - лактоза - галактоза. Пустыня сахара и сахар. Древний Египет - тростник в долине Нила - тростниковый сахар, впервые попавший в Европу из Африки - Сахара.

Морской прибой непрерывно бьет о камни водоросли литорали. Они изгибаются, сплетаются друг с другом, завязываются в узлы, трутся взмытым песком - и все же сохраняют свою целостность. Что придает им форму и эластичность?

Микробиологи выращивают культуру микроорганизмов на агаровых средах. Практически это застывшая при комнатной температуре вода – твердый агаровый гель можно получить из 1л воды и всего 1 г агара. При всей гигантской всеядности микроорганизмов в целом (некоторые из них разрушают бетон и резину, утилизируют молекулярный водород, живут в серной кислоте и т.д.), лишь немногие из них способны переваривать агар. Агар – тоже полисахарид. Его выделяют из морских водорослей, которым он и подобные ему полисахариды обеспечивают чрезвычайно прихотливый набор физико-механических и физико-химических характеристик, необходимых растению для выживания в столь своеобразной среде, как прибойная зона Мирового океана.

По ошибке больному перелили кровь другой группы. Наступает бурная, чрезвычайно опасная реакция. Чем она вызвана? Оказывается, полисахаридные цепи биополимеров крови донора и реципиента различались по структуре всего на одно-два моносахаридных звена.

В технике борьба с трением и износоустойчивость – проблема фундаментального значения. В живых системах, где механическое движение распространено универсально, та же проблема решается не менее универсально – при помощи гликопротеиновой смазки. Гликопротеины – биополимеры, включающие белковую и пептидную компоненты, ковалентно связанные с углеводной. Она выстилает в животных организмах все трущиеся поверхности: кости в суставах, кровеносные сосуды, мочеполовые пути, поверхность тела рыб и т.л. А у антарктических рыб определенные гликопротеины играют роль антифризов, препятствующих замерзанию крови и других биологических жидкостей при отрицательных температурах.

А вот другой гликопротеин – хитин. Из него построены жесткие панцыри разнообразных низших животных – ракообразных, насекомых и т.д. Иная функция – иной набор механических и химических характеристик, во многом уникальных. Большой кусок крабьего панцыря, например, хрупок, и, казалось бы, измельчить его не составляет труда. Но попробуйте растереть его более мелкие кусочки в ступке. Материал пружинит, выскальзывает из-под пестика, но растиранию упорно не поддается. Он «ухитряется» быть одновременно и твердым, и вязким, и хрупким, и эластичным.

В организм попали болезнетворные микроорганизмы. Резко повышается температура, энергично вырабатывается иммунный ответ организма. На что в первую очередь реагирует организм-хозяин? На то, с чем соприкасается прежде всего: на материал, выстилающий внешнюю поверхность клеток-паразитов.У одного из классов возбудителей инфекционных болезней это липополисахариды – высокомолекулярные структуры, включающие липидную и полисахаридную части. У каждого вида – свои липополисахариды, и ответ на них строго индивидуален и специфичен (так, иммунитет от брюшного тифа не спасает от возвратного).

Кто в наше время не знает о нуклеиновых кислотах. Три структурных элемента обязательно входят в состав их каждого мономерного звена: гетероциклическое основание, фосфат и моносахаридный остаток: рибоза или 2-дезокси-рибоза. Таким образом, и это – производные углеводов.

Можно, наконец, вспомнить и о том, что углеводы составляют основную часть всего органического вещества на планете Земля.

Итак, углеводы – это глюкоза, крахмал, целлюлоза, лактоза, сахароза, агар, гликопротеины, липополисахариды, хитин, нуклеиновые кислоты, ацетатная пленка, шпательное волокно и т.д. и т.п. Так что же это все-таки такое,- углеводы? Как почти любому классу органических соединений с развитой химией, им трудно дать вполне строгое определение, т.е. такое, которое включало бы все представители и ислключало все, не входящее в этот класс. Поэтому поступим иначе: попытаемся описать основные структурные черты углеводов и показать на конкретных примерах их типичных представителей, какими они бывают.

Можно начать с семантики. «Угле-воды», уголь и вода, Cn(H2O)n. Так их называли в прошлом веке, когда элементный состав органических соединений служил одной из важнейших доступных характеристик. Действительно, элементарная формула глюкозы, C6H12O6 – отвечает схеме «уголь+вода». Но понятно, что разбор одного элементного состава дает немного. Даже уксусная кислота в соответствии с таким определением есть углевод [CH3COOH = C2(H2O)2]. Так что оставим семантику и обсудим вопрос в более современных терминах.


Структура моносахаридов


Элементарным звеном всех высших углеводов, так же как и низкомолекулярных производных этого класса, являются моносахариды. В типичных случаях их молекулы содержат прямую насыщенную цепь из пяти или шести углеродных атомов, каждый из которых несет гидроксильный заместитель, а один окислен до альдегидное или кетонной группы. Таковы, например, альдопентозы 1 (т.е. С5-сахара с альдегидной группой), альдогексозы 2 (т.е. С6-сахара с альдегидной группой), кетогексозы (C6-сахара с кетогруппой) и др. Кроме наиболее распространенных пентоз и гексоз, существуют еще C3-, C4-, C7-, C8- и даже C9-моносахариды, называемые соответственно триозами, тетрозами, пентозами, октозами и нонозами.





Концевое CH2OH-звено цепи (кстати, нумеруют углеродные атомы в моносахаридах всегда начиная с карбонильной группы или с ближайшего к ней конца цепи) может быть окислено до карбонила. При этом возникает другой распространенный подкласс моносахаридов – уроновые кислоты, например альдопентуроновые кислоты 4 или альдогексуроновые кислоты 5. В других случаях наоборот, у углеродного атома отсутствует гидроксил. Возникает так называемое дезоксизвено и соответственно дезоксисахара, например, 2-дезокси-альдопентозы (в частности, 2-дезокси-D-рибоза, комнонент ДНК) или 6-дезокси-альдогексозы 7. Одна из гидроксильных групп (а иногда и две или даже три) может быть заменена аминогруппой. Это аминосахара, как, например, 2-амино-2-дезокси-альдогексозы 8, часто, но нестрого называемые гексозаминами. Бывают, наконец, и моносахариды с разветвлением углеродного скелета а также с несколькими видами отклонений от классических структур типа 1-3 одновременно.

Не следует думать, что названные типы соединений – некие искусственные «монстры». Наоборот, все это типичные и достаточно распространенные структурные элементы более сложных природных углеводов (другое дело, что все они могут быть получены и синтетически). Более того, существуют в природе и нередко играют весьма важную роль в жизнедеятельности клетки и более сложные моносахариды, еще более отдаляющиеся по структуре и составу от классических «угле-водов». Здесь мы хотели указать на наиболее распространенные типы структурных вариаций, встречающихся в этом классе.

В каждой из рассмотренных структур имеется по нескольку ассиметричных центров и, следовательно, для каждой возможно существование 2n стереоизомеров, где n – число ассиметрических центров. В альдогексозах (2), например, их 4. В классификационных целях из них выделяют один: тот, который максимально удален от карбонильной группы (для гексоз это С-5), и по его конфигурации (D или L) относят моносахарид соответственно к D- или L-ряду.

А как описать конфигурацию остальных центров? Для этого применяют серию тривиальных названий для всех возможных комбинаций относительных конфигураций. Так возникают такие названия, как D-глюкоза (9), D-галактоза (10), D-арабиноза (11), L-арабиноза (12), D-рибоза (13) и др.



Структуры 9-13 написаны в проекции Фишера. Напомним, что по правилам фишеровской проекции, тетраэдрический углеродный атом располагают так, чтобы его четыре связи проектировались на плоскость в виде креста, причем связи, смотрящие на наблюдателя (над плоскостью бумаги), образуют горизонтальную линию, а уходящие под плоскость бумаги (от наблюдателя) – вертикальную, как это показано на примере формул 14 и 15. Чаще всего символ центрального атома опускают, заменяя его точкой пересечения прямых (формула 16). Это показано на схеме, составленной в проекции Фишера



где 1-4 – заместители при центральном углеродном атоме, атом углерода в плоскости бумаги, заместители 1 и 3 – над плоскостью, заместители 2 и 4 – под плоскостью.

Итак, главные источники структурного и функционального многообразия моносахаридов лежат в различном наборе функциональных групп (карбонильные, гидроксильные, карбоксильные, аминогруппы и т.д.) и в не меньшей степени в различиях стереохимии. Последнее надо особо подчеркнуть. В обычном курсе органической химии рассматривают свойства и различия отдельных классов соединений, основанные в первую очередь на различиях бутлеровских структур, и отдельно в виде некоего экзотического приложения – вопросы стереохимии. В химии сахаров такого разделения не может быть. В принципе вся эта область есть органическая стереохимия par excellence*, и все многообразие свойств углеводов проистекает прежде всего из их стереохимических различий. Так, например, кардинальные различия свойств и биологической функции целлюлозы и одного из двух компонентов крахмала – амилозы – обусловлены различием конфигурации лишь одного ассиметричного центра элементарного звена этих стереоизомерных полисахаридов.

Целый ряд классических деструктивных методов установления строения органических веществ привел исследователей прошлого века к структурам типа 1-13 для моносахаридов.И в смысле справедливости строения углеродного скелета и положения заместителей эти структуры отражают непреложную, добытую экспериментом истину. Тем не менее они не соответствуют действительному строению моносахаридов, хотя и удобны в дидактическом плане: для описания и запоминания относительных конфигураций ассиметрических центров (чем мы в дальнейшем еще воспользуемся).

Чтобы продвинуться дальше (ближе к реальности)

нам нужно вспомнить некоторые свойства карбонильных соединений. Альдегиды и кетоны (по крайней мере обычные) в присутствии кислот легко реагируют со спиртами, образуя ацетали и кетали. Как и многие другие реакции конденсации, образование ацеталей и кеталей резко ускоряется в том случае, когда реагирующие группы пространственно сближены, например расположены на подходящем расстоянии внутри одной молекулы*. Моносахарижы представлены полиоксиальдегидами или полиоксикетонами, в которых карбонильная группа может на выбор вступать в конденсацию с любым гидроксилом той же молекулы. Естественно, что такая реакция осуществляется с наиболее «удобно» расположенным гидроксилом. Вследствие ряда причин, на которых мы сейчас не будем останавливаться, оптимальное расположение карбонильной и спиртовой групп отвечает замыканию пяти- и шестичленных циклов.

Действительно, одна из спиртовых гидроксильных групп моносахарида, например D-глюкозы (9), самопроизвольно вступает в конденсацию с альдегидной группой той же молекулы с образованием ацетальной связи. При этом возникает циклическое производное, но не ацеталь, а полуацеталь, т.е. такое, в котором один из заместителей при бывшем карбонильном атоме углерода – спиртовый остаток, а другой – гидроксильная группа. Так образуются пятичленные, так называемые фуранозные циклы (17), если в реакции участвует гидроксил при С-4 или шестичленные – пиранозные циклы (18), если в реакцию вступает гидроксил при С-5.



Подведем предварительные итоги. Моносахариды – это полиоксиальдегиды или полиоксикетоны с прямой (в типичных случаях) насыщенной углеродной цепью. Часть гидроксильных групп может отсутствовать или быть заменена на другие функциональные группы. Обычное состояние моносахаридов (и, как мы увидим в дальнейшем, всех их важнейших природных и синтетических производных) циклическое, включающее образование пяти- и шестичленного гетероцикла с одним атомом кислорода в цикле.

Теперь возникает технический, но немаловажный вопрос: Как их изобразить на бумаге?


Изображение молекул углеводов на плоскости


Хотя уже пещерные художники умели несколькими штрихами создавать адекватные образы явлений внешнего мира, проблема двухмерного изображения трехмерных объектов актуальная и по сей день. Вот, например, как столкнулся с ней шестилетний Антуан Сент-Экзюпери: «Я много раздумывал о полной приключений жизни джунглей и тоже нарисовал цветным карандашом свою первую картинку… Я показал свое творение взрослым и спросил, не страшно ли им. – Разве шляпа страшная? – возразили мне. А это была совсем не шляпа. Это был удав, который проглотил слона. Тогда я написовал удава изнутри, чтобы взрослым было понятнее. Им ведь всегда все нужно объяснять».

Из опыта автора «Маленького принца» мы видим, что есть два пути изображения объекта: подробное и схематическое. Первое технически сложно и мало годится для повседневности, второе удобно, но для его понимания требуется некоторое воображение. Для самого художника последнее ограничение не было существенным – он ведь много размышлял о своем предмете, прежде чем взялся за карандаш.

Молекулы сахаров – существенно трехмерные объекты. Но это еще не все. Гораздо важнее и менее тривиально, что у них нет никаких элементов симметрии, которые позволили бы изобразить их на бумаге в двух измерениях, без существенной потери информации. Это не бензол, имеющий плоскость симметрии и позволяющий без большого ущерба забыть об одной из пространственных координат и уверенно манипулировать на бумаге с плоским шестиугольником.

Выше мы пользовались проекцией Фишера. Она точно отражает относительную конфигурацию ассиметрических центров, но ничего не говорит (хуже того, говорит весьма искаженно) об истинном расположении атомов в пространстве. И уж совсем неудобной становится при изображении циклических структур. Отнюдь не случайно, формулы 17 и 18 имеют такой уродливый вид. Поэтому Хеуорс, один из классиков химии углеводов (который явно много размышлял о своем предмете), предложил повсеместно применяемые и по сей день так называемые перспективные формулы сахаров.

Если вы хотите подробно рассмотреть кольцо с камнем, вы вряд ли станете смотреть на него сбоку – исчезнет ощущение объемности и формы кольца. И не будете смотреть вдоль его оси – плохо виден камень. Скорее всего, вы посмотрите на него под некоторым углом – тогда и форма не ускользнет, и камень хорошо виден. Точно так же поступают (мысленно, разумеется) с циклической молекулой сахара при ее изображении по Хеуорсу.

Правило простое: обращенную к наблюдателю часть цикла на рисунке помещают снизу, а от наблюдателя – наверху. При этом заместители автоматически расположатся над или под линиями, очерчивающими цикл. Обычно (хотя и не всегда) атом кислорода, входящий в цикл, помещают в правом верхнем углу (для пираноз) или наверху (для фураноз). Так, например, D-глюкопираноза описывается формулой 19, а D-глюкофураноза – формулой 20. Все ясно и наглядно. Нужно только помнить, что связи заместителей при каждом из углеродных атомов цикла, например H-C и C-OH, не лежат на самом деле на одной прямой, как изображается на рисунке, а составляют часть тетраэдрической системы связей центрального углеродноо атома, т.е. угол H-C-OH не равен 180, а близок к 109,5

Формулы Хеуорса ясны и удобны, но еще достаточно сложны и мало годятся для скорописи. Поэтому их обычно упрощают и схематизируют. Прежде всего отказываются от символов углеродных атомов цикла. Так получаются формулы 21 и 22. Затем убирают жирные линии, выделяющие приближенную к наблюдателю часть цикла. И, наконец, не изображают атомы водорода и их связи. Так приходят к формулам 23 и 24 – уже не «популярным», а тем самым, которые встречаются в любой вполне профессиональной статье или книге по химии сахаров.

  1   2   3   4   5   6   7   8   9   ...   15

Добавить в свой блог или на сайт

Похожие:

Углеводы Издательство \"Наука\" iconЛекция Углеводы, липиды Углеводы
Наиболее богаты углеводами растительные клетки (до 90%). Количество атомов водорода в молекулах углеводов, как правило, в два раза...

Углеводы Издательство \"Наука\" iconИ. И. Веселовског о издательство “наука” Москва 1967 Эта
Перевод с английского И. И. В е с е л о в с к о г о издательство “наука” Москва 1967

Углеводы Издательство \"Наука\" iconПояснительная записка Снижение интереса школьников к химии и соответственно уровень их знаний объясняется, прежде всего, нарастанием сложности программного материала, сокращение учебного времени на его усвоение. Настоящий модуль «Углеводы»
Настоящий модуль «Углеводы» разработан на основании обязательного минимума содержания по химии для основной общеобразовательной школы...

Углеводы Издательство \"Наука\" iconКнига рассчитана на студентов, аспирантов, научных сотрудников, философов-специалистов, а также на широкий круг читателей, изучающих марксизм-ленинизм. Ответственный редактор доктор философских наук, профессор К. X. Рахматуллин (с) Издательство «Наука»
О роли сомнения в познании. Соловьева Г. Г. Алма-Ата, «Наука» Казсср, 1976. 142 с

Углеводы Издательство \"Наука\" iconОрганические вещества. Углеводы. Белки

Углеводы Издательство \"Наука\" iconВопросы для подготовки к зачёту
Специфика научного познания. Наука и философия. Наука и ис­кусство. Наука и обыденное познание. Наука и религия

Углеводы Издательство \"Наука\" iconОрганизм как целое в и ндивидуальном и и сторическом издательство «наука» москва 1982 развитии удк 573. 7: 575 Шм альгаузен И. И
Шмальгаузен И. И. Организм как целое в индивидуальном и историческом развитии. Избранные труды. М.: Наука, 1982. 383 стр

Углеводы Издательство \"Наука\" iconАвтор Незвание Издательство Рязанов 1001 секрет телемастера Кн1 Наука и техника

Углеводы Издательство \"Наука\" iconПсихологическая наука в россии XX столетия: проблемы теории и истории
Психологическая наука в России XX столетия: проблемы теории и истории. Под ред. А. В. Брушлинского. — М.: Издательство «Институт...

Углеводы Издательство \"Наука\" iconJermakovs S. (Ермаков С. М.) Метод Монте-Карло и смежные вопросы. М: Наука, 1975. с 471
Кендалл М. Дж., Стюарт А.) Теория распределений. (1) М: Наука, 1966; Статистические выводы и связи. (2) М: Наука, 1973. с 899; Многомерный...


Разместите кнопку на своём сайте:
lib.convdocs.org


База данных защищена авторским правом ©lib.convdocs.org 2012
обратиться к администрации
lib.convdocs.org
Главная страница