Скачать 95.04 Kb.
|
Hybridization effect in coupled metamaterialsHui Liu, Shining Zhu Department of Physics, Nanjing University, People's Republic of China Email: zhusn@nju.edu.cn, liuhui@nju.edu.cn; URL: http://dsl.nju.edu.cn/mpp Abstract Although the invention of the metamaterials has stimulated the interest of many researchers and it has important applications on negative refraction and invisible cloak, the basic design idea is very simple: composing effective media from many small structured elements and controlling its artificial EM properties. According to the effective-media model, the coupling interactions between the elements in metamaterials are somewhat ignored; therefore, the effective properties of metamaterials can be viewed as the “averaged effect” of the resonance property of the individual elements. However, the coupling interaction between elements should always exist when they are arranged into metamaterials. Sometimes, especially when the elements are very close, this coupling effect is not negligible and will have a substantial effect on the metamaterials’ properties. Under such circumstances, the uncoupling model is no longer valid, and the effective properties of the metamaterials cannot be regarded as the outcome of the averaged effect of a single element. Many new questions arise: How do we model the coupling in metamaterials? What new phenomena will be introduced by this coupling effect? Can we find any new interesting applications in these coupled systems? In our recent works, a hybridization model was proposed to describe the coupling effect in metamaterials, such as magnetic dimmer [1-3], SRR chains [4-6], fish-net [7-8], nano-rods [10-12] and nanosandwichs [13-15]. An overall introduction to these recent developments in coupled metamaterials is given in our review paper [16]. [1] H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, Phys. Rev. B 76, 073101 (2007). [2] T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 92, 131111 (2008). [3] N. Liu, H. Liu, S. N. Zhu, and H. Giessen, Nature Photonics 3, 157 (2009). [4] H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, Phys. Rev. Lett. 97, 243902 (2006). [5] H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, Phys. Rev. B 79, 024304 (2009). [6] T. Li, R. X. Ye, C. Li, H. Liu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang, Optics Express 17, 11486 (2009). [7] T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, Optics Express 14, 11155 (2006). [8] Z. G. Dong, H. Liu, T. Li, Z. H. Zhu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang, Optics Express 16, 20974 (2008) [9] T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 93, 021110 (2008) [10] F. M. Wang, H. Liu, T. Li, S. N. Zhu, and X. Zhang, Phys. Rev. B 76, 075110 (2007). [11] F. M. Wang, H. Liu, T. Li, Z. G. Dong,S. N. Zhu, and X. Zhang, Phys. Rev. E 75, 016604 (2007) [12] F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu and W. W. Cao, Appl. Phys. Lett. 91, 133107 (2007) [13] D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, Phys. Rev. B 77, 214302 (2008) [14] S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, Optics Express 16, 3560 (2008). [15] S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 93, 233102 (2008) [16] H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, Phys. Status Solidi B 246, No. 7, 1397 (2009) Light localization and delocalization in two-dimensional array of cavity-containing metallic nanoparticlesZhen-Lin Wang Department of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China E-mail: zlwang@nju.edu.cn Abstract Light transmission through a monolayer hexagonal-close-packed dielectric/metallic core/shell nanoparticles are studied both theoretically and experimentally. Numerical calculations reveal that light can transmit through the dense particle assemblies via excitation of a variety of surface plasmons (SPs). Localized SPs confined within metal nanoshells can mediate a narrow-band dispersionless transmission resonance (TR). Wide-band TRs are also predicted as a result of strong near-field interparticle SP couplings, forming hybrid modes that are either localized at the nanogaps between adjacent particles or confined in the lattice pores, or distributed across the structure, each with distinct dispersion characteristics. By employing an electrochemical deposition confined within a templated organic porous mold, large-scale rigid arrays of metal colloids with a controllable cavity are fabricated. Light transmission resonances via the excitations of localized or propagating surface plasmon modes through the metallic periodic microstructures are observed experimentally and are in agreement with numerical simulations. ACKNOWLEDGEMENT This work was supported by the State Key Program for Basic Research of China and National Science Foundation of China (NSFC) under grant Nos. 10734010, 50771054 and 10804044. |