Removal of Co2+ from aqueous solutions by hydroxyapatite




Скачать 358.73 Kb.
НазваниеRemoval of Co2+ from aqueous solutions by hydroxyapatite
страница1/12
Дата конвертации28.10.2012
Размер358.73 Kb.
ТипДокументы
  1   2   3   4   5   6   7   8   9   ...   12
Smiciklas I., Dimovic S., Plecas I., Mitric M.

Removal of Co2+ from aqueous solutions by hydroxyapatite

2006, Water Research, (12) 2267-2274


1. Rosskopfová O, Galamboš M, Ometáková J, Čaplovičová M, Rajec P. Study of sorption processes of copper on synthetic hydroxyapatite. J Radioanal Nucl. 2012;293(2):641-7.


2. Mahmud K, Azharul Islam M, Mitsionis A, Albanis T, Vaimakis T. Adsorption of direct yellow 27 from water by poorly crystalline hydroxyapatite prepared via precipitation method. Desalination and Water Treatment. 2012;41(1-3):170-8.


3. Gong J, Chen L, Zeng G, Long F, Deng J, Niu Q, et al. Shellac-coated iron oxide nanoparticles for removal of cadmium(II) ions from aqueous solution. J Environ Sci (China). 2012;24(7):1165-73.


4. Zong P, Guo Z, He C, Zhao Y, Liu S, Wang H, et al. Impact of environmental conditions on the sequestration of radionuclide 60Co(II) at ca-rectorite/water interface. J Radioanal Nucl. 2012;293(1):289-97.


5. Bunsiri R, Thamaphat K, Limsuwan P. Synthesis and characterization of pure natural hydroxyapatite from fish bones bio-waste [Internet]; 2012 [cited 2012 Aug 30]. Available from: www.scopus.com.


6. Xie H, Li X, Cheng C, Wu D, Zhang S, Jiao Z, et al. Kinetic and thermodynamic sorption study of radiocobalt by magnetic hydroxyapatite nanoparticles. J Radioanal Nucl. 2012;291(2):637-47.


7. Oliva J, Cama J, Cortina JL, Ayora C, De Pablo J. Biogenic hydroxyapatite (apatite II™) dissolution kinetics and metal removal from acid mine drainage. J Hazard Mater. 2012;213-214:7-18.


8. Almasi A, Omidi M, Khodadadian M, Khamutian R, Gholivand MB. Lead(II) and cadmium(II) removal from aqueous solution using processed walnut shell: Kinetic and equilibrium study. Toxicol Environ Chem. 2012;94(4):660-71.


9. Şimşek S, Ulusoy U. Uranium and lead adsorption onto bentonite and zeolite modified with polyacrylamidoxime. J Radioanal Nucl. 2012;292(1):41-51.


10. Lü Q-, Huang Z-, Liu B, Cheng X. Preparation and heavy metal ions biosorption of graft copolymers from enzymatic hydrolysis lignin and amino acids. Bioresour Technol. 2012;104:111-8.


11. Gupta N, Kushwaha AK, Chattopadhyaya MC. Adsorptive removal of pb 2+, co 2+ and ni 2+ by hydroxyapatite/chitosan composite from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers. 2012;43(1):125-31.


12. Viipsi K, Sjöberg S, Shchukarev A, Tõnsuaadu K. Surface phase transformations, surface complexation and solubilities of hydroxyapatite in the absence/presence of cd(II) and EDTA. Appl Geochem. 2012;27(1):15-21.


13. Sdiri A, Higashi T, Jamoussi F, Bouaziz S. Effects of impurities on the removal of heavy metals by natural limestones in aqueous systems. J Environ Manage. 2012;93(1):245-53.


14. He M, Zhu Y, Yang Y, Han B, Zhang Y. Adsorption of cobalt(II) ions from aqueous solutions by palygorskite. Appl Clay Sci. 2011;54(3-4):292-6.


15. Kizilkaya B, Adem Tekinay A. Comparative study and removal of co and ni (II) ions from aqueous solutions using fish bones. Science of Advanced Materials. 2011;3(6):949-61.


16. Wang D, Paradelo M, Bradford SA, Peijnenburg WJGM, Chu L, Zhou D. Facilitated transport of cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition. Water Res. 2011;45(18):5905-15.


17. Bazargan-Lari R, Bahrololoom ME, Nemati A. Sorption behavior of zn (II) ions by low cost and biological natural hydroxyapatite/chitosan composite from industrial waste water. Journal of Food, Agriculture and Environment. 2011;9(3-4):892-7.


18. Dimović SD, Smičiklas ID, Sljivić-Ivanović MZ, Plećaš IB, Slavković-Beškoski L. The effect of process parameters on kinetics and mechanisms of co 2+ removal by bone char. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering. 2011;46(13):1558-69.


19. Oliva J, De Pablo J, Cortina J-, Cama J, Ayora C. Removal of cadmium, copper, nickel, cobalt and mercury from water by apatite II ™: Column experiments. J Hazard Mater. 2011;194:312-23.


20. Uzal N, Jaworska A, Miśkiewicz A, Zakrzewska-Trznadel G, Cojocaru C. Optimization of co 2+ ions removal from water solutions via polymer enhanced ultrafiltration with application of PVA and sulfonated PVA as complexing agents. J Colloid Interface Sci. 2011;362(2):615-24.


21. Krishna B, Venkateswarlu P. Influence of ficus religiosa leaf powder on bisorption of cobalt. Indian J Chem Technol. 2011;18(5):381-90.


22. Wang D, Chu L, Paradelo M, Peijnenburg WJGM, Wang Y, Zhou D. Transport behavior of humic acid-modified nano-hydroxyapatite in saturated packed column: Effects of cu, ionic strength, and ionic composition. J Colloid Interface Sci. 2011;360(2):398-407.


23. Handley-Sidhu S, Renshaw JC, Moriyama S, Stolpe B, Mennan C, Bagheriasl S, et al. Uptake of sr 2+ and co 2+ into biogenic hydroxyapatite: Implications for biomineral ion exchange synthesis. Environmental Science and Technology. 2011;45(16):6985-90.


24. Guo Z, Li Y, Zhang S, Niu H, Chen Z, Xu J. Enhanced sorption of radiocobalt from water by bi(III) modified montmorillonite: A novel adsorbent. J Hazard Mater. 2011;192(1):168-75.


25. Chu L-, Wang D-, Wang Y-, Si Y-, Zhou D-. Transport of hydroxyapatite nanoparticles in saturated packed column: Effects of humic acid, pH and ionic strengths. Huanjing Kexue/Environmental Science. 2011;32(8):2284-91.


26. Ignat M, Alexandroaei M, Lungu NC. The removal of zn 2+ ions from groundwater using hydroxyapatite nanoparticles. Rev Chim. 2011;62(5):518-21.


27. Rosskopfová O, Galamboš M, Rajec P. Study of sorption processes of strontium on the synthetic hydroxyapatite. J Radioanal Nucl. 2011;287(3):715-22.


28. Baybaş D, Ulusoy U. The use of polyacrylamide-aluminosilicate composites for thorium adsorption. Appl Clay Sci. 2011;51(1-2):138-46.


29. Handley-Sidhu S, Renshaw JC, Yong P, Kerley R, Macaskie LE. Nano-crystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions. Biotechnol Lett. 2011;33(1):79-87.


30. Kizilkaya B, Tekinay AA, Dilgin Y. Adsorption and removal of cu (II) ions from aqueous solution using pretreated fish bones. Desalination. 2010;264(1-2):37-47.


31. Dong L, Zhu Z, Qiu Y, Zhao J. Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent. Chem Eng J. 2010;165(3):827-34.


32. Wang D, Zhang J, Hu L, Huang W. In: Adsorption for ni (II) ions in sewage water through nano-hydroxyapatie particles. AIP conference proceedings; ; 2010. p. 268-71.


33. Yang Q, Wang J, Guo F, Shao L, Chen J. Preparation of hydroxyapatite nanoparticles using a microreactor combined with hydrothermal aging. Beijing Huagong Daxue Xuebao (Ziran Kexueban)/Journal of Beijing University of Chemical Technology (Natural Science Edition). 2010;37(6):92-7.


34. Zhang J, Wang D, Zhou J, Yao A, Huang W. Precise adsorption behavior and mechanism of ni(II) ions on nano-hydroxyapatite. Water Environ Res. 2010;82(11):2279-84.


35. Yang Q, Wang J-, Guo F, Chen J-. Preparation of hydroxyaptite nanoparticles by using high-gravity reactive precipitation combined with hydrothermal method. Industrial and Engineering Chemistry Research. 2010;49(20):9857-63.


36. Kousalya GN, Rajiv Gandhi M, Sairam Sundaram C, Meenakshi S. Synthesis of nano-hydroxyapatite chitin/chitosan hybrid biocomposites for the removal of fe(III). Carbohydr Polym. 2010;82(3):594-9.


37. Ghassabzadeh H, Torab-Mostaedi M, Mohaddespour A, Maragheh MG, Ahmadi SJ, Zaheri P. Characterizations of co (II) and pb (II) removal process from aqueous solutions using expanded perlite. Desalination. 2010;261(1-2):73-9.


38. Mostafa M, El-Absy MA, Amin M, El-Amir MA, Farag AB. Partial purification of neutron-activation 99Mo from cro/supss-contaminant radionuclides onto potassium nickel hexacyanoferrate(II) column. J Radioanal Nucl. 2010;285(3):579-88.


39. Islam M, Chandra Mishra P, Patel R. Physicochemical characterization of hydroxyapatite and its application towards removal of nitrate from water. J Environ Manage. 2010;91(9):1883-91.


40. Feng Y, Gong J-, Zeng G-, Niu Q-, Zhang H-, Niu C-, et al. Adsorption of cd (II) and zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chem Eng J. 2010;162(2):487-94.


41. Tan S-, Chen X-, Ye Y, Sun J, Dai L-, Ding Q. Hydrothermal removal of sr 2+ in aqueous solution via formation of sr-substituted hydroxyapatite. J Hazard Mater. 2010;179(1-3):559-63.


42. Chen J-, Wang Y-, Zhou D-, Cui Y-, Wang S-, Chen Y-. Adsorption and desorption of cu(II), zn(II), pb(II), and cd(II) on the soils amended with nanoscale hydroxyapatite. Environmental Progress and Sustainable Energy. 2010;29(2):233-41.


43. Li L, Zhu Z-, Qiu Y-, Zhang H, Zhao J-. Adsorption of fluoride ions on a ca-deficient hydroxyapatite. Huanjing Kexue/Environmental Science. 2010;31(6):1554-9.


44. Liao Dexiang D, Zheng W, Li X, Yang Q, Yue X, Guo L, et al. Removal of lead(II) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste. J Hazard Mater. 2010;177(1-3):126-30.


45. Ngwenya N, Chirwa EMN. Single and binary component sorption of the fission products Sr2+, cs+ and Co2+ from aqueous solutions onto sulphate reducing bacteria. Minerals Eng. 2010;23(6):463-70.


46. Vučinić DR, Radulović DS, Deušić SD. Electrokinetic properties of hydroxyapatite under flotation conditions. J Colloid Interface Sci. 2010;343(1):239-45.


47. Kousalya GN, Rajiv Gandhi M, Meenakshi S. Removal of toxic cr(VI) ions from aqueous solution using nano-hydroxyapatite-based chitin and chitosan hybrid composites. Adsorption Science and Technology. 2010;28(1):49-64.


48. Zhang M, Liu J-, Miao R, Li G-, Du Y-. Preparation and characterization of fluorescence probe from assembly hydroxyapatite nanocomposite. Nanoscale Research Letters. 2010;5(4):675-9.


49. Bhatnagar A, Minocha AK, Sillanpää M. Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochem Eng J. 2010;48(2):181-6.


50. Zhu Z, Li L, Zhang H, Qiu Y, Zhao J. Adsorption of lead and cadmium on ca-deficient hydroxyapatite. Sep Sci Technol. 2010;45(2):262-8.


51. Ma B, Shin WS, Oh S, Park Y-, Choi S-. Adsorptive removal of co and sr ions from aqueous solution by synthetic hydroxyapatite nanoparticles. Sep Sci Technol. 2010;45(4):453-62.


52. Saha B, Harry ID, Siddiqui U. Electrochemically modified viscose-rayon-based activated carbon cloth for competitive and noncompetitive sorption of trace cobalt and lead ions from aqueous solution. Sep Sci Technol. 2009;44(16):3950-72.


53. Caramalǎu C, Bulgariu L, Macoveanu M. Kinetic study of cobalt(II) adsorption on peat activated by simple chemical treatments. Environmental Engineering and Management Journal. 2009;8(6):1351-8.


54. Caramalǎu C, Bulgariu L, Macoveanu M. Adsorption characteristics of co(II) ions from aqueous solutions on romanian peat moss. Environmental Engineering and Management Journal. 2009;8(5):1089-95.


55. Smičiklas I, Onjia A, Raičević S, Janaćković D. Authors' response to comments on "factors influencing the removal of divalent cations by hydroxyapatite". J Hazard Mater. 2009;168(1):560-2.


56. Ahmadpour A, Tahmasbi M, Bastami TR, Besharati JA. Rapid removal of cobalt ion from aqueous solutions by almond green hull. J Hazard Mater. 2009;166(2-3):925-30.


57. El-Sofany EA, Zaki AA, Mekhamer HS. Kinetics and thermodynamics studies for the removal of Co2+ and cs+ from aqueous solution by sand and clay soils. Radiochimica Acta. 2009;97(1):23-32.


58. Sharma YC, Srivastava V, Singh VK, Kaul SN, Weng CH. Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ Technol. 2009;30(6):583-609.


59. Ulusoy U, Akkaya R. Adsorptive features of polyacrylamide-apatite composite for pb 2+, UO 2 2+ and th 4+. J Hazard Mater. 2009;163(1):98-108.


60. Hashimoto Y, Taki T, Sato T. Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions. J Environ Manage. 2009;90(5):1782-9.


61. Wang Y-, Chen J-, Cui Y-, Wang S-, Zhou D-. Effects of low-molecular-weight organic acids on cu(II) adsorption onto hydroxyapatite nanoparticles. J Hazard Mater. 2009;162(2-3):1135-40.


62. Chutia P, Kato S, Kojima T, Satokawa S. Arsenic adsorption from aqueous solution on synthetic zeolites. J Hazard Mater. 2009;162(1):440-7.


63. Chutia P, Kato S, Kojima T, Satokawa S. Adsorption of as(V) on surfactant-modified natural zeolites. J Hazard Mater. 2009;162(1):204-11.


64. Aissa A, Debbabi M, Gruselle M, Thouvenot R, Flambard A, Gredin P, et al. Sorption of tartrate ions to lanthanum (III)-modified calcium fluor- and hydroxyapatite. J Colloid Interface Sci. 2009;330(1):20-8.


65. Vijaya Lakshmi G, Chitti Babu N, Ravi Kumar PV, Subba Rao D, Venkateswarlu P. Potential of erythrina variegata orientalis leaf powder for the removal of cobalt(II). Chem Eng Commun. 2009;196(4):463-80.


66. Zhu R, Yu R, Yao J, Mao D, Xing C, Wang D. Removal of Cd2+ from aqueous solutions by hydroxyapatite. Catalysis Today. 2008;139(1-2):94-9.


67. Li X-, Liao D-, Xu X-, Yang Q, Zeng G-, Zheng W, et al. Kinetic studies for the biosorption of lead and copper ions by penicillium simplicissimum immobilized within loofa sponge. J Hazard Mater. 2008;159(2-3):610-5.


68. Üzüm C, Shahwan T, Eroǧlu AE, Lieberwirth I, Scott TB, Hallam KR. Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. Chem Eng J. 2008;144(2):213-20.


69. Simon FG, Biermann V, Peplinski B. Uranium removal from groundwater using hydroxyapatite. Appl Geochem. 2008;23(8):2137-45.


70. Lazarević S, Janković-Častvan I, Tanasković D, Pavićević V, Janaćković D, Petrović R. Sorption of Pb2+, Cd2+, and Sr2+ ions on calcium hydroxyapatite powder obtained by the hydrothermal method. J Environ Eng. 2008;134(8):683-8.


71. Sundaram CS, Viswanathan N, Meenakshi S. Defluoridation chemistry of synthetic hydroxyapatite at nano scale: Equilibrium and kinetic studies. J Hazard Mater. 2008;155(1-2):206-15.


72. Tõnsuaadu K, Viipsi K, Trikkel A. EDTA impact on Cd2+ migration in apatite-water system. J Hazard Mater. 2008;154(1-3):491-7.


73. Akkaya R, Ulusoy U. Adsorptive features of chitosan entrapped in polyacrylamide hydrogel for pb 2+, UO 2 2+, and th 4+. J Hazard Mater. 2008;151(2-3):380-8.


74. Corami A, Mignardi S, Ferrini V. Cadmium removal from single- and multi-metal (cd + pb + zn + cu) solutions by sorption on hydroxyapatite. J Colloid Interface Sci. 2008;317(2):402-8.


75. Wang X, Min BG. Cadmium sorption properties of poly(vinyl alcohol)/hydroxyapatite cryogels: II. effects of operating parameters. J Sol Gel Sci Technol. 2008;45(1):17-22.


76. Khan E, Li M, Huang CP. Hazardous waste treatment technologies. Water Environ Res. 2007;79(10):1858-902.


77. Hashimoto Y, Sato T. Removal of aqueous lead by poorly-crystalline hydroxyapatites. Chemosphere. 2007;69(11):1775-82.


78. Lam KF, Yeung KL, McKay G. Efficient approach for Cd2+ and Ni2+ removal and recovery using mesoporous adsorbent with tunable selectivity. Environmental Science and Technology. 2007;41(9):3329-34.

  1   2   3   4   5   6   7   8   9   ...   12

Добавить в свой блог или на сайт

Похожие:

Removal of Co2+ from aqueous solutions by hydroxyapatite iconHydroxyapatite (hap) microparticles were synthesized by reacting separate aqueous solutions of calcium chloride CaCl

Removal of Co2+ from aqueous solutions by hydroxyapatite iconRadical reactions with metal complexes in aqueous solutions a. Masarwa1, D. Meyerstein1,2

Removal of Co2+ from aqueous solutions by hydroxyapatite iconRemoval of Chloride and Iron Ions from Archaeological Wrought Iron with Sodium Hydroxide and Ethylenediamine Solutions

Removal of Co2+ from aqueous solutions by hydroxyapatite icon128 (6), 464-472. Munoz, M. I. and Aller, A. J. (2012), Chemical modification of coal fly ash for the retention of low levels of lead from aqueous solutions. Fuel, 102

Removal of Co2+ from aqueous solutions by hydroxyapatite icon100), 222-228. Munoz, M. I. and Aller, A. J. (2012), Chemical modification of coal fly ash for the retention of low levels of lead from aqueous solutions. Fuel, 102

Removal of Co2+ from aqueous solutions by hydroxyapatite iconС. И. Мольков динамика химического состава и оптимизация
...

Removal of Co2+ from aqueous solutions by hydroxyapatite icon2. Overview of purposes and reform of Civil Procedure 1
«Le monde judiciaire malade de sa justice» et «Des solutions pou la justice civile» P. 63 – the judicial world is sick and solutions...

Removal of Co2+ from aqueous solutions by hydroxyapatite iconУчебный курс «Технологии программирования. Курс на базе Microsoft Solutions Framework (msf)» для подготовки по направлению «Информационные технологии»
Лекция методология Microsoft Solutions Framework. Выработка концепции. Планирование

Removal of Co2+ from aqueous solutions by hydroxyapatite iconThe removal of natural organic matter and inorganic salts in nanofiltration concentrates

Removal of Co2+ from aqueous solutions by hydroxyapatite iconCO2 Reduction Methods from Vehicles


Разместите кнопку на своём сайте:
lib.convdocs.org


База данных защищена авторским правом ©lib.convdocs.org 2012
обратиться к администрации
lib.convdocs.org
Главная страница