«Нетрадиционные способы получения энергии»




Скачать 308.14 Kb.
Название«Нетрадиционные способы получения энергии»
страница3/6
Дата конвертации17.01.2013
Размер308.14 Kb.
ТипРеферат
1   2   3   4   5   6

Современные методы генерации электроэнергии из энергии ветра


Мощность ветрогенератора зависит от площади, заметаемой лопастями генератора, и высоты над поверхностью. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров.

Воздушные потоки у поверхности Земли/моря являются ламинарными — нижележащие слои тормозят расположенные выше. Этот эффект заметен до высоты 1 км, но резко снижается уже на высотах больше 100 метров. Высота расположения генератора выше этого пограничного слоя одновременно позволяет увеличить диаметр лопастей и освобождает площади на земле для другой деятельности. Современные генераторы (2010 год) уже вышли на этот рубеж, и их количество резко растёт в мире. Ветрогенератор начинает производить ток при ветре 3 м/с и отключается при ветре более 25 м/с. Максимальная мощность достигается при ветре 15 м/с. Отдаваемая мощность не прямопропорциональна скорости ветра: при увеличении ветра вдвое, от 5 м/с до 10 м/с, мощность увеличивается в десять раз.

Наибольшее распространение в мире получила конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения, хотя кое-где ещё встречаются и двухлопастные. Были попытки построить ветрогенераторы так называемой ортогональной конструкции, то есть с вертикальным расположением оси вращения. Считается, что они имеют преимущество в виде очень малой скорости ветра, необходимой для начала работы ветрогенератора. Главная проблема таких генераторов — механизм торможения. В силу этой и некоторых других технических проблем ортогональные ветроагрегаты не получили практического распространения в ветроэнергетике.

Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. Но стоимость инвестиций по сравнению с сушей выше в 1,5 — 2 раза. В море, на расстоянии 10—12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров.

1.3 Строение промышленной ветряной установки


http://upload.wikimedia.org/wikipedia/commons/thumb/a/ac/wind_turbine_int.svg/250px-wind_turbine_int.svg.png

  1. Фундамент

  2. Силовой шкаф, включающий силовые контакторы и цепи управления

  3. Башня

  4. Лестница

  5. Поворотный механизм

  6. Гондола

  7. Электрический генератор

  8. Система слежения за направлением и скоростью ветра (анемометр)

  9. Тормозная система

  10. Трансмиссия

  11. Лопасти

  12. Система изменения угла атаки лопасти

  13. Колпак ротора



1.4 Типы ветрогенераторов

Существуют два основных типа ветротурбин: с вертикальной осью вращения и с горизонтальной.

Индустрия домашних ветрогенераторов активно развивается. Уже сейчас за вполне умеренные деньги можно приобрести ветряную установку и на долгие годы обеспечить энергонезависимость своему загородному дому. Обычно для обеспечения электроэнергией небольшого дома вполне достаточно установки номинальной мощностью 1 кВт при скорости ветра 8 м/с. Если местность не ветреная, ветрогенератор можно дополнить фотоэлектрическими элементами или дизель-генератором, а ветрогенераторы с вертикальными осями могут быть дополнены более меньшими ветрогенераторами (например, турбина Дарье может быть дополнена ротором Савониуса. И при этом одно другому не мешает — источники будут замечательно друг друга дополнять).

c:\users\юлия олеговна\desktop\физкартинки\veter.jpg


-ветродвигатели с горизонтальной осью вращения (2...5)

-ветродвигатели с вертикальной осью вращения (карусельные: лопастные (1) и ортогональные (6))

-Типы крыльчатых ветродвигателей отличаются только количеством лопастей


1.5 Перспективные разработки


Департамент Энергетики США (DoE) финансирует разработки и испытания ветрогенераторов мощностью 5—8 МВт как для наземного использования, так и для установки в море.

Норвежская компания StatoilHydro и немецкий концерн Siemens AG разработали плавающие ветрогенераторы для морских станций большой глубины. StatoilHydro построила демонстрационную версию мощностью 2,3 МВт в июне 2009 года. Турбина под названием Hywind, разработанная Siemens Renewable Energy, весит 5 300 тонн при высоте 65 метров. Располагается она в 10 километрах от острова Кармой, неподалеку от юго-западного берега Норвегии. Компания планирует в будущем довести мощность турбины до 5 МВт, а диаметр ротора — до 120 метров. Аналогичные разработки ведутся в США.

Компания Magenn разработала аппарат легче воздуха с установленным на нём ветрогенератором. Аппарат поднимается на высоту 120—300 метров. Нет необходимости строить башню и занимать землю. Аппарат работает в диапазоне скоростей ветра от 1 м/с до 28 м/с. Аппарат может перемещаться в ветряные регионы или быстро устанавливаться в местах катастроф.

Компания Windrotor предлагает новую очень эффективную конструкцию ротора мощной турбины, позволяющую значительно увеличить его размеры и коэффициент использования энергии ветра. Предполагается, что эта конструкция станет новым поколением роторов ветровых турбин.

Департамент Энергетики США (DoE)в конце 2007 года объявил о готовности финансирования особо малых (до 5 кВт) ветрогенераторов персонального использования.

В мае 2009 года в Германии был запущен в эксплуатацию первый ветрогенератор, установленный на гибридной башне компании Advanced Tower Systems (ATS). Нижняя часть башни высотой 76,5 метров построена из железобетона. Верхняя часть высотой 55 метров построена из стали. Общая высота ветрогенератора (вместе с лопастями) составляет 180 метров. Увеличение высоты башни позволит увеличить выработку электроэнерии до 20 %].

В конце 2010 года испанские компании Gamesa, Iberdrola, Acciona Alstom Wind, Técnicas Reunidas, Ingeteam, Ingeciber, Imatia, Tecnitest Ingenieros и DIgSILENT Ibérica создали группу для совместной разработки ветрогенератора мощностью 15,0 МВт.


2. Солнечная энергетика


Солнечная энергетика — направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и является экологически чистой, то есть не производящей вредных отходов. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии.


2.1. Способы получения электричества и тепла из солнечного излучения

  • Получение электроэнергии с помощью фотоэлементов.

  • Преобразование солнечной энергии в электричество с помощью тепловых машин:

  • гелиотермальная энергетика — Нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах).

  • Термовоздушные электростанции (преобразование солнечной энергии в энергию воздушного потока, направляемого на турбогенератор).

  • Солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием). Преимущество — запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.



2.2 Типы фотоэлектрических элементов

  • Монокристаллические кремниевые

  • Поликристаллические кремниевые

  • Тонкоплёночные

В 2005 году на тонкоплёночные фотоэлементы приходилось 6 % рынка. В 2006 году тонкоплёночные фотоэлементы занимали 7 % долю рынка. В 2007 году доля тонкоплёночных технологий увеличилась до 8 %. В 2009 году доля тонкоплёночных фотоэлементов выросла до 16,8 %




2.4 Крупнейшие производители фотоэлементов в 2009 году

  1. First Solar — 1100,0 МВт

  2. Suntech — 704,0 МВт

  3. Sharp — 595,0 МВт

  4. Q-Cells — 586,0 МВт

  5. Yingli — 525,3 МВт

  6. JA Solar — 520,0 МВт

  7. Kyocera — 400,0 МВт

  8. Trina Solar — 399,0 МВт

  9. SunPower — 397,0 МВт

  10. Gintech — 368,0 МВт

2.5. Перспективы солнечной энергетики

Сгенерированная на основе солнечного излучения энергия сможет к 2050 году обеспечить 20-25 % потребностей человечества в электричестве и сократит выбросы углекислоты. Как полагают эксперты Международного энергетического агентства (IEA), солнечная энергетика уже через 40 лет при соответствующем уровне распространения передовых технологий будет вырабатывать около 9 тысяч тераватт-часов — или 20-25 % всего необходимого электричества, и это обеспечит сокращение выбросов углекислого газа на 6 млрд тонн ежегодно.


3. Энергия волн океана

http://bits.wikimedia.org/skins-1.17/common/images/magnify-clip.pnghttp://upload.wikimedia.org/wikipedia/commons/thumb/8/8b/wavedragon.jpg/220px-wavedragon.jpg

Генератор на энергии волн Skizze

Эне́ргия волн океана — энергия, переносимая волнами на поверхности океана. Может использоваться для совершения полезной работы — генерации электроэнергии, опреснения воды и перекачки воды в резервуары. Энергия волн — возобновляемый источник энергии.

Мощность волнения оценивают в кВт на погонный метр, то есть в кВт/м. По сравнению с ветровой и солнечной энергией энергия волн обладает гораздо большей удельной мощностью. Так, средняя мощность волнения морей и океанов, как правило, превышает 15 кВт/м. При высоте волн в 2 м мощность достигает 80 кВт/м. То есть, при освоении поверхности океанов не может быть нехватки энергии. Конечно, в механическую и электрическую энергию можно использовать только часть мощности волнения, но для воды коэффициент преобразования выше, чем для воздуха — до 85 %.

Волновая энергия представляет собой сконцентрированную энергию ветра и, в конечном итоге, солнечной энергии. Мощность, полученная от волнения всех океанов планеты, не может быть больше мощности, получаемой от Солнца. Но удельная мощность электрогенераторов, работающих от волн, может быть гораздо большей, чем для других альтернативных источников энергии.

Несмотря на схожую природу, энергию волн принято отличать от энергии приливов и океанских течений. Выработка электроэнергии с использованием энергии волн не является распространенной практикой, в настоящее время в этой сфере проводятся только экспериментальные исследования.

Представляет интерес и использование энергии волн для движения судов (движители волновые).


1   2   3   4   5   6

Похожие:

«Нетрадиционные способы получения энергии» iconНетрадиционные способы получения энергии
По последним данным Международного Энергетического Агентства (мэа, англ. Iea), на 2008 год вырабатывалось 20 108 твт·ч энергии. Доля...

«Нетрадиционные способы получения энергии» iconНетрадиционные способы получения энергии
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Нетрадиционные способы получения энергии» iconУрок (физика 8 класс) Урок по теме: «Внутренняя энергия. Способы изменения внутренней энергии»
Цели урока: Ввести понятие внутренней энергии как суммы кинетической энергии движения молекул и потенциальной энергии их взаимодействия....

«Нетрадиционные способы получения энергии» iconРабочая программа дисциплины «Нетрадиционные и возобновляемые источники энергии»
В. А. Агеевым на основании примерной типовой программы дисциплины "Нетрадиционные и возобновляемые источники энергии", рекомендованной...

«Нетрадиционные способы получения энергии» iconТема: нетрадиционные источники энергии
В глубокой древности человечество начало с бережного использования возобновляемых источников энергии, но постепенно перешло к безрассудному...

«Нетрадиционные способы получения энергии» iconНетрадиционные источники питания : список литературы
Альтернативные источники энергии. Материалы советско-итальянского симпозиума 1982 г. Ч. Комплексное использование альтернативных...

«Нетрадиционные способы получения энергии» iconПлан-конспект урока «Внутренняя энергия. Способы изменения внутренней энергии»
Цель: ввести понятие внутренней энергии как суммы кинетической энергии движения молекул и потенциальной энергии их взаимодействия...

«Нетрадиционные способы получения энергии» iconРабочая программа учебной дисциплины «нетрадиционные источники энергии»
Целью дисциплины является усвоение обучающимися знаний о видах ресурсов нетрадиционных возобновляемых источников энергии (нвиэ),...

«Нетрадиционные способы получения энергии» iconПрограмма, методические указания и контрольные задания по курсу «Техника высоких напряжений» для студентов заочной формы обучения по специальности «Нетрадиционные источники энергии» Харьков 2007
Контрольные задания по курсу «Техника высоких напряжений» для студентов заочной формы обучения по специальности «Нетрадиционные источники...

«Нетрадиционные способы получения энергии» iconНетрадиционные способы лечения пчел
...


Разместите кнопку на своём сайте:
lib.convdocs.org


База данных защищена авторским правом ©lib.convdocs.org 2012
обратиться к администрации
lib.convdocs.org
Главная страница