Скачать 158.64 Kb.
|
АМИНОКИСЛОТЫ И ИХ НЕКОТОРЫЕ ФУНКЦИИ В ОРГАНИЗМЕ Общее число встречающихся в природе аминокислот достигает около 300. Среди них различают: а) аминокислоты, входящие в состав белков; б) аминокислоты, образующиеся из других аминокислот, но только после включения последних в процесс синтеза белка (их обнаруживают в гидролизатах белков); в) свободные аминокислоты. С точки зрения питания выделяют эссенциальные (незаменимые) аминокислоты. Эти аминокислоты не могут синтезироваться в организме человека и должны поступать с пищей. Аминокислоты — полифункциональные соединения, содержащие по меньшей мере две разные химические группировки, способные реагировать друг с другом с образованием ковалентной пептидной (амидной) связи: ![]() В аминокислотах амино- (—NH2) и карбоксильная (—СООН) группы присоединены к одному и тому же атому углерода, который называют а-углеродом. Природа боковых цепей 20 протеи но генных аминокислот приведена на рис. 2.4. Для объяснения и понимания свойств аминокислот следует помнить следующее. 1. Аминокислоты, существуя в твердом или растворенном состоянии, всегда находятся в форме биполярных ионов (цвиттерионов), положение равновесия которых зависит от рН среды: ![]() Нахождение аминокислот в виде ионов обуславливает растворимость в воде и нерастворимость в неполярных жидкостях. Большинство аминокислот растворимы в воде, но у аминокислот с гидрофобными группами (изолейцин, лейцин, тирозин) растворимость относительно невысока. В организме ионное состояние аминокислот определяет их всасываемость в желудочно-кишечном тракте после гидролитического расщепления белков и транспорт к различным органам и тканям. Способность к ионизации в кислой или щелочной среде лежит в основе разделения аминокислот ионообменной хроматографией и электрофорезом. ![]() Рис. 2.4. Боковые цепи аминокислот, входящих или способных включаться в состав белков (курсивом выделены названия незаменимых аминокислот) 2. Большинство природных а-аминокислот относятся к L-стереохи-мическому ряду, однако в некоторых пептидах (антибиотики грамицидин, актиномицин) встречаются аминокислоты D-ряда. Последние, как правило, не усваиваются организмом человека. Аминокислоты D- и L-рядов значительно отличаются по вкусу. Так, D-глутаминовая кислота не имеет вкуса, а L-глутаминовая кислота обладает вкусом мяса. Получая последнюю из клейковины пшеницы, ее используют в качестве вкусовой добавки к пищевым концентратам. Сладкий вкус имеют и другие аминокислоты L-ряда: валин, треонин, пролин, серии и т. д. Они все в большей степени привлекают к себе внимание как заменители сахара в питании диабетиков. 3. Аминокислоты отличаются друг от друга структурой боковых цепей, от которой зависят химические, физические свойства и физиологические функции белков в организме. Аминокислоты с гидрофобными боковыми группами большей частью локализованы внутри белковых макромолекул, тогда как аминокислоты с полярными боковыми группами располагаются на их поверхности. В составе полярных а-аминокислот имеются функциональные группы, способные к ионизации (ионогенные) и не способные переходить в ионное состояние (неионогенные). При этом кислые и основные ионогенные группы радикалов, как правило, располагаясь на поверхности молекул белков, принимают участие в ионных (электростатических) взаимодействиях. В роли полярных неионогенных групп в молекулах белков выступают гидроксильные группы серина, треонина и амидные группы глутамина (Глн) и аспарагина (Асн). Эти группы могут располагаться как на поверхности, так и внутри белковой молекулы, и принимать участие в образовании водородных связей с другими полярными группировками. Почти все а-аминокислоты, поступающие из пищеварительного тракта человека в кровяное русло организма, претерпевают ряд общих превращений, назначение которых заключается в обеспечении пластическим материалом процесса синтеза белков и пептидов и осуществлении дыхания с образованием АТФ (рис. 2.5). В основе таких превращений ![]() Рис. 2.5. Основные функции аминокислот в организме лежат реакции дезаминирования, трансаминировани я и декарбоксилирования. Эти реакции подробно рассматриваются в курсе биохимии, здесь же остановимся на специфических путях обмена и модификации отдельных а-аминокислот. В тканях организма легко осуществляется ферментативная окислительно-восстановительная реакция, обусловленная наличием в цистеине реакционнеспособной SH-группы: ![]() Свойство данной аминокислоты окисляться придает ей защитные и радиопротекторные свойства. В присутствии цистеина снижается интенсивность окислительных процессов в липидах и белках, повышается устойчивость организма к ионизирующим излучениям и стабилизируется качество принимаемых лекарственных препаратов. При участии двух остатков цистеина в полипептидных цепях образуются дисульфидные связи, которые обуславливают биологическую активность или функциональные свойства белков в составе пищи. Особо важную роль дисульфидные связи играют в белках пшеницы, так как они придают клейковине упругие свойства (см. Белки злаков). Основная физиологическая роль другой серосодержащей аминокислоты — метионина — связана с наличием лабильной метильной группы. Отдавая группу —СН3 через образование S-аденозилметионина, метионин принимает участие в синтезе глицерофосфолипидов: ![]() ![]() В приведенных реакциях синтеза глицерофосфолипидов видна физиологическая роль и аминокислоты серии, которая, как и треонин, в этерифицированном виде при участии фосфорной кислоты в большом количестве входит в состав сложных белков — фосфопротеидов (казеина молока и вителлина яйца): ![]() Серии в свою очередь синтезируется из глицина под действием фермента, содержащего тетрагидрофолевую кислоту (ТГФК). Эта реакция изучена с помощью метода меченых атомов: ![]() Глицин является предшественником пуринового кольца гема крови и образует так называемые парные соединения. С желчными кислотами, например холевой кислотой, он образует гликохолевую кислоту, с бензойной кислотой — гиппуровую кислоту: ![]() Гликохолевая кислота принимает участие в процессе усвоения липидов, а в форме гиппуровой кислоты из организма выводится токсичная бензойная кислота. Три аминокислоты — аргинин, глицин и метионин — участвуют в синтезе креатина — соединения, с помощью которого в мышечной ткани происходит непрерывный ресинтез макроэрга АТФ: ![]() При участии креатина в организме человека и животных образуется креатинфосфат, который по мере необходимости отдает свою фосфатную группу молекулам АДФ, превращаясь в креатинин: ![]() Креатин и циклический креатинин входят в состав мясного экстракта, их соотношение зависит от рН среды и температуры. Так, при нагревании мяса в кислой среде в экстракте преобладает креатинин. В составе живых организмов, пищевых продуктов и сырья встречаются и другие, так называемые «редкие», аминокислоты, не входящие в состав белков. Так, р*-аланин является составной частью мясных бульонов, а бетаин — мелассы — отхода свеклосахарного производства: ![]() Аминокислоты цитруллин и орнитин участвуют вместе с аргинином в цикле образования мочевины у человека и животных. Фундаментальную роль в обмене веществ живых организмов играют глутаминовая и аспарагиновая кислоты. Они участвуют в процессах расщепления, синтеза и переноса, часто в форме амидов: ![]() Глутамин, например, является основной формой переноса аммиака в крови человека и вместе с аспарагиновой кислотой служит предшественником пиримидинового кольца нуклеотидов. Азот 1 происходит из аспарагиновой кислоты, азот 3 — из глутамина, углерод 4, 5, 6 кольцу отдает аспарагиновая кислота, а углерод 2 происходит от СО2. Предварительно молекула СО2 и амидная группа глутамина образуют карбамоилфосфат: ![]() Реакции декарбоксилирования глутаминовой кислоты с образованием у-аминомасляной кислоты, относящейся к группе медиаторов, отводится важная роль в обмене веществ мозга и нервной ткани. С обменом глутаминовой кислоты тесно связан обмен пролина, который синтезируется из нее в результате восстановления пролиндегидрогеназой. Пролин играет важную роль при формировании структуры коллагена и белков пшеничной клейковины,, вызывая изгибы в полипептидных цепях. В фибриллярных белках соединительной ткани мяса и коллагене, наряду с пролином, встречаются 4-оксипролин и 5-окси-лизин, образующиеся за счет окисления соответствующих аминокислот уже после включения в белок. Присутствие оксипролина в мясных и колбасных изделиях оказывает влияние на их качество и учитывается при его оценке. ![]() Тирозин является ответственным за окраску волос, кожи, глаз, за темный цвет пищевых продуктов (например, ржаного хлеба), так как с его участием синтезируются темноокрашенные пигменты — меланины. Механизм реакции до конца не изучен, но известны первые этапы их синтеза. Под действием медьсодержащего фермента тирозин превращается в диоксифенилаланин (ДОФА), который далее окисляется, циклизуется, образуя индолхинон. Полимеризация последнего приводит к синтезу меланинов: ![]() Образование меланинов усиливается под влиянием ультрафиолетовых лучей (при загаре) и может быть причиной злокачественных новообразований. При наследственном заболевании — альбинизме, характеризующемся отсутствием фермента тирозиназы, наоборот, не наблюдается пигментации кожи, волос, но присутствует боязнь света. Сам же тирозин образуется из фенилаланина. В здоровом организме реакция синтеза тирозина протекает с участием двухкомпонентного фермента фенилала-нингидроксилазы по схеме: ![]() При наследственном заболевании фенилкетонурией у человека происходит мутация гена, который кодирует синтез одного из компонентов фермента, содержащего в качестве переносчика водорода соединение биоптерин. Наследственная аномалия, сопровождающаяся тяжелой умственной отсталостью, характеризуется превращением фенилаланина не по указанному выше пути, а по типу переаминирования с избыточным накоплением фенилпировиноградной кислоты в моче: ![]() Снизить степень умственной отсталости, особенно у детей в раннем возрасте, можно с помощью понижения содержания фенилаланина в пище, чтобы избыток последнего не оказывал токсического действия на клетки головного мозга. Известен и ряд других врожденных заболеваний, связанных с нарушением обмена аминокислот. Так, алкаптонурия возникает в результате недостатка оксидазы гомогентизиновой кислоты — продукта обмена тирозина, гиперпролинемия — из-за недостатка фермента пролиноксидазы, а цитруллинемия обусловлена нарушением цикла образования мочевины, так как в организме не синтезируется аргининсукцинатси нтетаза. Незаменимая аминокислота триптофан служит предшественником никотиновой кислоты, НАД и НАДФ, серотонина и индол ил уксусной кислоты — гормона роста растений. Серотонин, обладая сосудосуживающим действием, синтезируется в клетках кишечника и нервной ткани. Из организма он выводится в виде гидрооксииндол ил уксусной кислоты (ГИУК): ![]() ![]() Из тирозина и триптофана, содержащихся в пище, при участии микробных ферментов в кишечнике образуются ядовитые продукты — крезол, фенол, скатол, индол, обезвреживание которых происходит в печени путем связывания с серной или глюкуроновой кислотой с образованием нетоксичных (парных) кислот, например фенолсерной кислоты. ![]() В результате декарбоксилирования аминокислот в организме образуются некоторые важные биогенные амины. Образование и роль этанола-мина, серотонина и у-аминомасляной кислоты уже рассмотрено. Здесь же отметим, что декарбоксилирование аспарагиновой кислоты обеспечивает синтез (3-аланина, являющегося составной частью биологически активных соединений — КоАиАПБ, а декарбоксилирование лизинаиорнитина под влиянием ферментов кишечной микрофлоры приводит к образованию ядовитых диаминов — кадаверина и путресцина. В здоровом организме оба амина полностью обезвреживаются в слизистой оболочке кишечника. Часть аминокислот выполняет роль медиаторов — веществ, принимающих участие в передаче нервных импульсов от одной нервной клетки к другой. При раздражении нервных волокон медиаторы реагируют со специфическим рецептором и обеспечивают соответствующую физиологическую функцию: регуляцию сна, бодрствования, сердечно-сосудистой деятельности, терморегуляцию тела. К медиаторам относятся ацетилхолин, глутаминовая и аспарагиновая кислота, глицин, ГАМК, гистамин, серотонин, норадреналин. Таким образом, приведенные сведения показывают, какую большую роль играют аминокислоты в синтезе важнейших физиологически активных соединений в организме и обеспечении некоторых свойств пищевого сырья и продуктов. Обобщенная схема представлена на рис. 2.6. ![]() НЕЗАМЕНИМЫЕ АМИНОКИСЛОТЫ. ПИЩЕВАЯ И БИОЛОГИЧЕСКАЯ ЦЕННОСТЬ БЕЛКОВ Все живые организмы различаются по способности синтезировать аминокислоты, необходимые для биосинтеза белков. В организме человека синтезируется только часть аминокислот, другие должны доставляться с пищей. Первые из них называются заменимыми, вторые — незаменимыми (см. рис. 2.4). Заменимые аминокислоты способны заменять одна другую в рационе, так как они превращаются друг в друга или синтезируются из промежуточных продуктов углеводного или липидного обмена. Для незаменимых аминокислот такие пути обмена существуют только у растений и некоторых микроорганизмов, например Е. coli. Жизнедеятельность человека обеспечивается ежедневным потреблением с пищей сбалансированной смеси, содержащей восемь незаменимых аминокислот и две частично заменимые. Незаменимые представлены аминокислотами с разветвленной цепью углерода — лейцином, изо-лейцином и валином, ароматическими — фенилаланином, триптофаном и алифатическими — треонином, лизином и метионином. Так как из ме-тионина и фенилаланина в организме синтезируется цистеин и тирозин, соответственно, то наличие в пище в достаточном количестве этих двух заменимых аминокислот сокращает потребность в незаменимых предшественниках. К частично заменимым аминокислотам относят аргинин и гистидин, так как в организме они синтезируются довольно медленно. Недостаточное потребление аргинина и гистидина с пищей у взрослого человека в целом не сказывается на развитии, однако может возникнуть экзема или нарушиться синтез гемоглобина. В аргинине и гистидине особенно нуждается молодой организм. Отсутствие в пище хотя бы одной незаменимой аминокислоты вызывает отрицательный азотистый баланс, нарушение деятельности центральной нервной системы, остановку роста и тяжелые клинические последствия типа авитаминоза. Нехватка одной незаменимой аминокислоты приводит к неполному усвоению других. Данная закономерность подчиняется закону Либиха, по которому развитие живых организмов определяется тем незаменимым веществом, которое присутствует в наименьшем количестве. Зависимость функционирования организма от количества незаменимых аминокислот используется при определении биологической ценности белков химическими методами. Наиболее широко используется метод X. Митчела и Р. Блока (Mitchell, Block, 1946), в соответствии с которым рассчитывается показатель аминокислотного с кора (а. с). Скор выражают в процентах или безразмерной величиной, представляющей собой отношение содержания незаменимой аминокислоты (а. к.) в исследуемом белке к ее количеству в эталонном белке. При расчете скора (в %) формула выглядит следующим образом: ![]() Аминокислотный состав эталонного белка сбалансирован и идеально соответствует потребностям организма человека в каждой незаменимой кислоте, поэтому его еще называют «идеальным». В 1973 г. в докладе ФАО и ВОЗ опубликованы данные по содержанию каждой аминокислоты в эталонном белке. В 1985 г. они были уточнены в связи с накоплением новых знаний об оптимальном рационе человека (табл. 2.1). Аминокислота, скор которой имеет самое низкое значение, называется первой лимитирующей аминокислотой. Значение скора этой аминокислоты определяет биологическую ценность и степень усвоения белков. Наглядно показатель биологической ценности можно изобразить в виде самой низкой доски бочки Либиха на примере белков пшеницы (рис. 2.7). Полная емкость бочки соответствует «идеальному» белку, а высота доски лизина — биологической ценности пшеничного белка. Таблица 2.1. Рекомендуемые составы и суточная потребность человека в незаменимых аминокислотах (мг/г белка)
Другой метод определения биологической ценности белков заключается в определении индекса незаменимых аминокислот (ИНАК). Метод представляет собой модификацию метода химического скора (Oser, 1951) и позволяет учитывать количество всех незаменимых кислот. Индекс рассчитывают по формуле: ![]() где я — число аминокислот; индексы б, э — содержание аминокислоты в изучаемом и эталонном белке, соответственно. Помимо химических методов на практике широко применяют биологические методы с использованием микроорганизмов и животных. Основными показателями оценки при этом являются привес (рост животных) за определенный период времени, расход белка и энергии на единицу привеса, коэффициенты перевариваемости и отложения азота в теле, доступность аминокислот. Показатель, определяемый отношением привеса животных (в г) к количеству потребляемого белка (в г), разработан П. Осборном (Osborn, 1919) и носит название коэффициента эффективности белка (КЭБ). Для сравнения при определении показателя используют контрольную группу животных со стандартным ![]() белком — казеином, в количестве, обеспечивающем в рационе 10% белка. В опытах на крысах эффективность казеинового белка равна 2,5. Каждый из методов имеет как преимущества, так и недостатки. Животные и растительные белки заметно отличаются по биологической ценности. Аминокислотный состав животных белков близок к аминокислотному составу белков человека. Животные белки являются полноценными, тогда как растительные — из-за относительно низкого содержания в них лизина, триптофана, треонина и других по сравнению с мясом, молоком и яйцами — неполноценны. В табл. 2.2 приводится содержание незаменимых аминокислот, включая лимитирующие, в наиболее распространенных пищевых продуктах. С помощью этих данных можно ориентировочно составлять пищевой рацион, комбинируя белки различного происхождения в целях дополнения их по аминокислотному составу. Белки пшеницы, например, содержат недостаточное количество лизина (первая лимитирующая кислота) и треонина (вторая лимитирующая кислота), но эти аминокислоты в избытке присутствуют в казеине молока. С другой стороны, нехватка в казеине серосодержащих аминокислот компенсируется содержанием их в белках пшеницы. Важно помнить, что при избыточном потреблении животных белков в организм поступает повышенное количество насыщенных жирных кислот и холестерина. Поэтому целесообразнее составлять диету, содержащую достаточное количество растительного белка, но из разных его источников. Например, смесь кукурузы с фасолью обеспечит комплементарный состав белка и ликвидирует дефицит триптофана, лизина, метионина. Следует помнить, что сохранение нормального веса и работоспособности человека обеспечивается не только количеством и соотношением незаменимых аминокислот, но и содержанием общего азота. При его недостаточном количестве биологическая ценность белков понижается. Наряду с аминокислотным составом биологическая ценность белков определяется и степенью их усвоения после переваривания. Степень переваривания, в свою очередь, зависит от структурных особенностей, активности ферментов, глубины гидролиза в желудочно-кишечном тракте и вида предварительной обработки белков в процессах приготовления пищи (тепловой, гидротермической, в поле СВЧ и т. д.). Так, белки кожи и кератин волос из-за фибриллярной структуры вообще не используются человеком, несмотря на их близкий аминокислотный состав к составу белков тела. Тепловая обработка, разваривание, протирание и измельчение ускоряют переваривание белка, особенно растительного, тогда как нагревание при очень высоких температурах (свыше 100°С) затрудняет его. Животные белки имеют более высокую усвояемость, чем растительные. Из животных белков в кишечнике всасывается более 90% аминокислот, а из растительных — только 60—80%. В порядке убывания скорости ![]() усвоения белков в желудочно-кишечном тракте пищевые продукты располагаются следующим образом: рыба > молочные продукты > мясо > > хлеб > крупы. Одной из причин более низкой усвояемости растительных белков является их взаимодействие с полисахаридами (целлюлозой, гемииеллюлозами), которые затрудняют доступ пищеварительных ферментов к полипептидам. При недостатке в пище углеводов и жиров требования к белку (как носителю пищевой ценности) особенно возрастают, так как наряду с биологической ролью он начинает выполнять и энергетическую роль. С другой стороны, при избыточном содержании белков (на фоне необходимого количества основных энергетических компонентов) возникает опасность синтеза липидов и ожирения организма. |
![]() | Роль аминокислот в спорте и для жизни вообще трудно переоценить. Ведь аминокислоты это и «кирпичики» всего живого, и регуляторы всех... | ![]() | ... |
![]() | Изучение особенностей обмена некоторых аминокислот в организме имеет большое значение в постановке диагноза заболеваний, т к они... | ![]() | В белках аминокислоты связаны друг с другом по типу полипептидов и дикетопиперазинов. Образование полипептидов из аминокислот происходит... |
![]() | Белки — непериодические полимеры, мономерами которых являются α-аминокислоты. Обычно в качестве мономеров белков называют 20 видов... | ![]() | Незаменимые в отличие от заменимых не могут синтезироваться в организме человека и животных и должны доставляться с пищей и кормом.... |
![]() | Именно поэтому важно изучение физиологической роли элементов в организме человека | ![]() | Благодаря особенностям своей структуры и уникальным свойствам, эти три аминокислоты условно выделяют в отдельный класс. Аббревиатура... |
![]() | Они обеспечивают функции желез внутренней секреции, то есть выработку гормонов, повышение умственной и физической работоспособности,... | ![]() | Топография биогенных элементов в организме человека. Биологическая роль химических элементов в организме |