Students‘ and Teachers‘ Conceptions and Science Education




НазваниеStudents‘ and Teachers‘ Conceptions and Science Education
страница4/117
Дата конвертации27.10.2012
Размер4.57 Mb.
ТипДокументы
1   2   3   4   5   6   7   8   9   ...   117
Educational Researcher, 25(4), 5-11 // g1,SCON,SITL.

Anderson, J., Reder, L. , Simon, H. . (1997). Situative versus cognitive perspectives: Form versus substance. Educational Researcher, 26(1), 18-21 // g1,SITL.

Anderson, J., Lin, H.-S., Treagust, D., Ross, S., & Yore, L. (2007). Using large-scale assessment datasets for research in science and mathematics education: Programme for International Student Assessment (PISA). International Journal of Science and Mathematics Education, 5(4), 591-614 // g1.

Anderson, O. (1997). A neurocognitive perspective on current learning theory and science instructional strategies. Science Education, 81(1), 67-89 // g1.

Anderson, O. R. (1992). Some interrelationships between constructivist models of learning and current neurobiological theory, with implications for science education. Journal of Research in Science Teaching, 29(10), 1037-1058 // g1.

Anderson, O. R., Demetrius, O. J. (1993). A flow-map method of representing cognitive structure based on respondents' narrative using science content. Journal of Research in Science Teaching, 30(8), 953-969 // g5.

Anderson, O. R., Randle, D., Covotsos, T. (2001). The role of ideational networks in laboratory inquiry learning and knowledge of evolution among seventh grade students. Science Education, 85(4), 410-425 // g1, COSC, g5, g7, B, EVOLUTION.

Anderson, R. D. (1965). Children's ability to formulate mental models to explain natural phenomena. Journal of Research in Science Teaching, 3, 326-332 // g6.

Anderson, R. D., Mitchener, C.P. (1994). Research on science teacher education. In D. Gabel (Ed.), Handbook of research on science teaching and learning (pp. 1-44). New York: Macmillan Publishing Company // g9.

Anderson, R. D. (2007). Inquiry as an organizing theme for science curricula. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 807-830): Lawrence Erlbaum Associates // g1, INQUIRY.

Anderson, R. D. (2007). Teaching the theory of evolution in social, intellectual, and pedagogical context. Science Education, 91(4), 664-677 // g1, B, EVOLUTION.

Anderson, S., Moss, B. (1993). How wetland habitats are perceived by children: consequences for children's education and wetland conservation. International Journal of Science Education, 15(5), 473-485 // g6,B.

Anderson, T., Crossley, L. , Grayson, D. (1999). Identifying students' conceptual and reasoning difficulties with biochemistry. In M. Komorek, Behrendt, H. , Dahncke, H. , Duit, R. , Graeber, W. , Kross, A. (Ed.), Research in Science Education - Past, Present, and Future Vol.1 (pp. 86-88). Kiel: IPN Kiel // g6,B.

Andersson, B., Bach, F. (1995). Developing a new teaching sequence about gases for grade 7 - Ideas, experiences and results. Paper presented at the First European Conference on Research in Science Education, Leeds, UK, April 7.-11. , 1995 // g7,P,M.

Andersson, B., Bach, F. (1996). Developing new teaching sequences in science: The example of 'gases and their properties'. In G. Welford, Osborne, J. , Scott, P. (Ed.), Research in Science Education in Europe (pp. 7-21). London: The Falmer Press // g7,P,AT,CSC.

Andersson, B., Wallin, A. (2000). Students' understanding of the Greenhouse Effect, the social consequences of reducing CO2 emissions and the problem of Ozone layer depletion. Journal of Research in Science Teaching, 37(10), 1096-1111 // g6,STS.

Andersson, B., & Bach, F. (2005). On Designing and evaluating teaching sequences taking geometrical optics as an example. Science Education, 89(2), 196-218 // g7, P, O, g8, CTL.

Andersson, B., Bach, F., Hagman, M., Olander, C., & Wallin, A. (2005). Discussing a research programme for the improvement of science teaching. In K. Boersma, M. Goedhart, O. De Jong & H. Eijkelhof (Eds.), Research and the quality of science education (pp. 221-230). Dordrecht: Springer // g1, Scon, g7, P, O.

Andersson, B., & Wallin, A. (2006). On developing content-oriented theories taking biological evolution as an example. International Journal of Science Education, 28(6), 673-695 // g1, B, EVOLUTION.

Andersson, B. R. (1976). Science teaching and the development of thinking: Development of concrete operational thinking and of language resulting from the SCIS/LMN special concepts unit "Relativity of position and motion". Moelndal, Sweden: University of Gothenburg // g6.

Andersson, B. R. (1980). Pupils' thinking and course requirements in science teaching (EKNA). Newsletter, School Research, 1 // g6.

Andersson, B. R. (1980). Pupils' understanding of some aspects of energy transfer. EKNA-project 1980. Department of Education and Educational Research, University of Gothenburg. Moelndal // g6,P,M,E,T.

Andersson, B. R. (1980). Some aspects of children's understanding of boiling point. In W. F. Archenhold, Driver, R. , Orton, A. , Wood-Robinson, C. (Ed.), Cognitive development research in science and mathematics. Proceedings of an international seminar (pp. 252-259). Leeds: University of Leeds // g6,P,T.

Andersson, B. R., Renstroem, L. (1982). How Swedish pupils, age 12-15, explain "The Sugar in Water"-Problem. Leeds-Goeteborg Study. Pupils' content oriented reasoning in science. Working Paper No.1, presented at the EKNA-project 1982. Department of Education and Educational Research, University of Gothenburg. Moelndal // g6.

Andersson, B. R., Renstroem, L. (1982). How Swedish pupils, age 12-15, explain the "Aspirin"-Problem. Leeds-Goeteborg Study. Pupils' content oriented reasoning in science. Working Paper No.3, presented at the EKNA-project 1982. Department of Education and Educational Research, University of Gothenburg. Moelndal // g6.

Andersson, B. R., Renstroem, L. (1982). How Swedish pupils, age 12-15, explain the "exhaust"-problem. Leeds-Goeteborg Study. Pupils' content oriented reasoning in science. Working Paper 2, presented at the EKNA-project 1982. Department of Education and Educational Research, University of Gothenburg. Moelndal // g6.

Andersson, B. R., Renstroem, L. (1982). How Swedish pupils, age 12-15, explain the "Phosporus" problem. Leeds-Goeteborg Study: Pupils' content oriented reasoning in science. Moelndal: University of Gothenburg, Department of Education and Educational Research // g6,C.

Andersson, B. R., Kaerrqvist, C. (1982). Light and its properties. The pupil's perspective. EKNA-report No.8. Department of Education and Educational Research, University of Gothenburg. Moelndal // g6,P,O.

Andersson, B. R., Renstroem, L. (1982). Oxidation of steel wool. Moelndal: University of Gothenburg, Department of Education and Educational Research // g6,C.

Andersson, B. R., Kaerrqvist, C. (1983). How Swedish pupils, aged 12-15 years, understand light and its properties. European Journal of Science Education, 5(4), 387-402 // g6,P,O.

Andersson, B. R. (1984). Chemical reactions. Moendal: University of Gothenburg, Department of Education and Educational Research // g6,C.

Andersson, B. R. (1984). Wie Schueler einige Aspekte des Energietransfers im elektrischen Stromkreis verstehen. Der Physikunterricht, 2, 32-35 // g6,P,E.

Andersson, B. R. (1985). Pupils' reasoning with regard to an electromagnet. In R. Duit, Jung, W. , Rhoeneck, C. von (Ed.), Aspects of understanding electricity (pp. 153-163). Kiel: Schmidt & Klaunig // g6,P,E.

Andersson, B. R. (1986). The experimental gestalt of causation: A common core to pupils preconceptions in science. European Journal of Science Education, 2, 155-171 // g1,g6,P,M,E,T,O.

Andersson, B. R. (1986). Pupils explanations of some aspects of chemical reactions. Science Education, 70(5), 549-563 // g6,C.

Andersson, B. R. (1990). Pupils' conceptions of matter and its transformations (age 12-16). In P. L. Lijnse, Licht, P. , Vos, W. de, Waarlo, A. J. (Ed.), Relating macroscopic phenomena to microscopic particles: A central problem in secondary Science Education (pp. 12-35). Utrecht: CD-ß Press // g6,P,AT,C.

Andersson, B. R. (1990). Pupils' conceptions of matter and its transformations (age 12-16). Studies in Science Education, 18, 53-85 // g6,g7,P,AT,C.

Andersson, J. A. (1988). Ungdomsskoleelevers forstaelse av hvordan synssansen fungerer. Oslo: Senter for Realfagsundervisning, Universitetet i Oslo // g6,P,O.

Andrée, M. (2005). Ways of using 'everyday life' in the science classroom. In K. Boersma, M. Goedhart, O. De Jong & H. Eijkelhof (Eds.), Research and the quality of science education (pp. 107-116). Dordrecht: Springer // gp.

Andrew-Prevost, M. (1995). HIV/AIDS education in secondary schools: Facilitating cognitive development - methods and materials. In D. Psillos (Ed.), European Research in Science Education II (pp. 360-364). Thessaloniki: Art of Text S. A. // g6,B.

Angell, C., Guttersrud, O., Henriksen, E. K., & Isnes, A. (2004). Physic: Frightful, but fun. Pupils' and teachers' views of physics and physics teaching. Science Education, 88(5), 683-706 // g6, CTL, CSC.

Angus, J. W. (1981). Children's conceptions of the living world. Australien Science Teacher's Journal, 27(3), 65-68 // g6,B.

Ankiewicz, P., De Swart, E., & De Vries, M. (2006). Some implications of the philosophy of technology for science , technology and society (STS) studies. International Journal of Technology and Design Education, 16(2), 117-141 // g1, STS.

Annetta, L. A., & Minogue, J. (2004). The effect teaching experience has on perceived effectiveness of interactive television as a distance education model for elementary school science teacher's professional development: Another digital divide? Journal of Science Education and Technology, 13(4), 485-494 // g8, CTL, MMEDIA.

Annetta, L. A., & Shymansky, J. A. (2006). Investigating science learning for rural elementary school teachers in a professional-development project through three distance-education strategies. Journal of Research in Science Teaching, 43(10), 1019-1039 // g8, CTL.

Ansorge-Grein, K., & Bader, H. J. (2005). Qualität in der naturwissenschaftlichen Lehrerfortbildung. In A. Pitton (Ed.), Relevanz fachdidaktischer Forschungsergebnisse für die Lehrerbildung (Vol. 25, pp. 433-435). Münster: LIT Verlag // g9.

Anton, M. A. (1999). Phaenomen - Sprache - Dialog, Vom Anthropomorphismus zum Fachgespraech. In R. Brechel (Ed.), Zur Didaktik der Physik und Chemie, Probleme und Perspektiven - Vortraege auf der Tagung fuer Didaktik der Physik / Chemie in Essen, Sept. 1998 (pp. 193-195). Alsbach: Leuchtturm-Verlag // g1,ANTHRO.

Anzai, Y., Yokoyama, T. (1984). Internal models in physics problem solving. Cognition and Instruction, 1(4), 397-450 // g6,P,M.

Apedoe, X., S. (2008). Engaging students in inquiry: Tales from an undergraduate geology laboratory-based course. Science Education, 92(4), 631-663 // g7, ES, INQUIRY.

Appleton, K., Hawe, E. , Biddulph, F. , Osborne, R. (1984). So you think the guide materials look good! Research in Science Education, 14, 206-212 // g8,CTL.

Appleton, K. (1985). Children's ideas about temperature. Research in Science Education, 15, 122-126 // g6,P,T.

Appleton, K. (1989). A learning model for Science Education. Research in Science Education, 19, 13-24 // g1.

Appleton, K. (1990). A learning model for Science Education: Deriving teaching strategies. Research in Science Education, 20, 1-10 // g1,g7.

Appleton, K. (1993). Using theory to guide practice: teaching science from a constructivist perspective. School Science and Mathematics, 93(5), 269-274 // g1,g7.

Appleton, K. (1995). Student teachers' confidence to teach science: Is more science knowledge necessary to improve self-confidence? International Journal of Science Education, 17(3), 357-369 // g6,CTL.

Appleton, K., Asoko, H. (1996). A case study of a teacher's progress toward using a constructivist view of learning to inform teaching in elementary science. Science Education, 80(2), 165-180 // g8,g9,CTL,CSC.

Appleton, K. (1996). Using learning theory to guide reflection during school experience. Asia-Pacific Journal of Teacher Education, 24(2), 147-157 // g7,g8,CTL,g9.

Appleton, K. (1997). Analysis and description of students' learning during science classes using a constructivist-based model. Journal of Research in Science Teaching, 34(3), 303-318 // g1,CON,g7.

Appleton, K. (1997). Implications for teaching derived from a constructivist-based model of learning in science classes. Paper presented at the symposium From Misconceptions to Constructed Understanding, at Cornell University, Ithaca, June 13-15, 1997., 1-27 // g1,CON,SCON,g7,g8,CTL,g9.

Appleton, K., Kindt, I. (1999). Why teach primary science? Influences on beginning teachers´ practices. International Journal of Science Education, 21(2), 155-168 // g8,CTL.

Appleton, K. (2002). Science activities that work: Perceptions of primary school teachers. Research in Science Education, 32(3), 393-410 // g8, CTL.

Appleton, K. (2003). How do beginning primary school teachers cope with science? Towards an understanding of science teaching practice. Research in Science Education, 33(1), 1-26 // g8, CTL, PCK, g9.

Appleton, K. (2007). Elementary science teaching. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 493-535): Lawrence Erlbaum Associates // g1, GEN, INQUIRY, CC, MODEL, ANA, CSC, WRITING.

Appling, J. R., & Peake, L. C. (2004). Instructional technology and molecular visualization. Journal of Science Education and Technology, 13(3), 361-366 // g7, C, MMEDIA.

Arabatzis, T., & Kindi, V. (2008). The problem of conceptual change in the philosophy and history of science. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 345-373). New York: Routledge // g1, CC, CSC, g3.

Arbaugh, F., Abell, S., Lannin, J., & Volkmann, M. (2007). Field-based internship models for alternative certification of science and mathematics teachers: Views of interns, mentors, and university educators. Eurasia Journal of Mathematics, Science and Technology Education, 3(3), 191-201 // g8, CTL, g9.

Arca, M., Guidoni, P. , Mazzoli, P. (1983). Structures of understanding at the root of Science Education. Part 1: Experience, language and knowledge. European Journal of Science Education, 5, 367-375 // g1.

Arca, M., Guidoni, P. , Mazzoli, P. (1984). Strucures of understanding at the root of science education. Part 2: Meanings of formalisation. European Journal of Science Education, 6, 311-319 // g1.

Arca, M., Guidoni, P. (1989). Specificite des aides didactiques dans la reconstruction cognitive de la complexite. In A. Giordan, Martinand, J. L. , Souchon, C. (Ed.), Actes JIES XI (pp. 187-191). Chamonix: Centre Jean Franco // g1.

Archenhold, W. F. (1980). An empirical study of the understanding by 16-19 year old students of the concepts of work and potential in physics. In W. F. Archenhold, Driver, R. , Orton, A. , Wood-Robinson, C. (Ed.), Cognitive development research in science and mathematics. Proceedings of an international seminar (pp. 228-238). Leeds: University of Leeds // g6,P,M.

Ardac, D., Sezen, A. H. (2002). Effectiveness of computer-based chemistry instruction in enhancing the learning of content and variable control under guided versus unguided conditions.
1   2   3   4   5   6   7   8   9   ...   117

Похожие:

Students‘ and Teachers‘ Conceptions and Science Education iconStudents‘ and Teachers‘ Conceptions and Science Education

Students‘ and Teachers‘ Conceptions and Science Education iconBibliography: stcse students‘ and Teachers‘ Conceptions and Science Education

Students‘ and Teachers‘ Conceptions and Science Education iconEngaging science students' hearts and minds: Researching science teachers' professional learning in the development of contemporary understandings of scientific literacy

Students‘ and Teachers‘ Conceptions and Science Education iconAttitudes Of Greek Physical Education Teachers Towards Inclusion Of Students With Disabilities In Physical Education Classes

Students‘ and Teachers‘ Conceptions and Science Education iconStudents’ Conceptions of Statistics: a phenomenographic Study

Students‘ and Teachers‘ Conceptions and Science Education iconAchieving Gender Equity in Science Classrooms Copmiled by Women Science Students and Science Faculty and Staff at necuse colleges and Based Upon Initial Work

Students‘ and Teachers‘ Conceptions and Science Education iconInformation for University Deans, Heads of departments, teachers, postgraduates, students and others engaged in academic research

Students‘ and Teachers‘ Conceptions and Science Education iconScience Teachers for Climate Awareness

Students‘ and Teachers‘ Conceptions and Science Education iconHands on experimentation with electrical circuits and equipment will prepare students for engineering school or provide basis for understanding digital computers, so it is especially appropriate for computer science majors and 3-2 engineering students

Students‘ and Teachers‘ Conceptions and Science Education iconAn Empirical Study On Teachers’ Perceptions Towards Inclusive Education In Malaysia


Разместите кнопку на своём сайте:
lib.convdocs.org


База данных защищена авторским правом ©lib.convdocs.org 2012
обратиться к администрации
lib.convdocs.org
Главная страница