Миф о репрессиях в советской науке




НазваниеМиф о репрессиях в советской науке
страница8/44
Дата конвертации01.11.2012
Размер5.36 Mb.
ТипРеферат
1   ...   4   5   6   7   8   9   10   11   ...   44


Эволюционные исследования говорят о том, что видимые исследователю мутации в среднем гене возникают один раз каждые 200000 лет [99]. Но как тогда объяснить возниконовение способности сбраживать лактозу, то есть наличие лактазы в желудочно–кишечном тракте у взрослых лпюдей у некоторых популяций человека, эволюция, происшедшая за 5000 лет, когда были одомашнены коровы?


Далее. ДНК каждой клетки человеческого организма теряет за сутки около 5000 остатков аденина и гуанина, компонентов нуклеотидов, вследствие температурного разрыва гликозидных связей между пурином и дезоксиробозой. При этом постоянно идет ремонт разрушенных участков молекулы ДНК, но ремонт этот не обладает 100% точностью. Возможны ошибки в отношении триплетов, которые кодируют не очень важные аминокислоты или в тех участках гена, которые не оказывают существенного влияния на его функцию. В этом случае мутации не заметны генетикам и биологам. Если же ошибка оказывается в участке белка, который является определяющим в реализации фунции белка, то мутация детектируется биологами и генетиками [100].


2. Если морганисты считали, что ядру принадлежит монополия в передаче признаков по наследству. "Классическая" генетика утверждала, что гены сосредоточены ТОЛЬКО в хромосомах, а потому передавать наследственные признаки при гибридизации можно, ЛИШЬ передавая хромосомы. Лысенко это отрицал, полагая что роль цитоплазмы также существенна и наследственность может передаваться через ассимиляты. Лысенко и мичуринцы, исходя из своей концепции наследственности, утверждали (и показывали это экспериментально), что передавать и создавать наследственные признаки можно и без передачи хромосом. "Современная" молекулярная генетика признала, что и в этом вопросе "классическая" генетика не права: молекулярная генетика признала, что цитоплазма также является носителем генетических свойств клетки.


Поскольку в то время морганисты связывали наследственность только с ядром и хромосомами и поэтому не могли признать результаты гибридизации, полученные Мичуриным. Сейчас доказано, что гены могут двигаться между хромосомами и между видами. Мобильные гены торпедируют идею о том,что гены тождественны хромосомам [101].


3. Лысенко считал, что изменения внешней среды оказывают очень значительное влияние на наследственность и новые свойства могут быть переданы по наследству. В отличие от морганистов Лысенко полагал, что приобритенные организмом при жизни признаки могут наследоваться и возможно направленное изменение признаков (т.е. не просто выбор подходящих для селекционной работы мутаций из случайного набора, а направленное изменение нужных признаков). Он не считал, что мутации являются принципиально случайными и ненаправленными.


Приобретенные признаки наследуются - см.ту же статью Голубовского [102]: "Кратковременное (20 мин) прогревание тела восьмидневного мышонка самки вызывало стойкие изменения ооцитов, ослаблявшие действие вредной мутации у внуков! “Передача улучшения развития глаз, наблюдаемая в опытах с нагреванием, может быть объяснена только передачей свойств, приобретенных ооцитами нагретых самок по наследству” [16]. " Т.е. воздействие на организм температуры привело

а)к направленной мутации (а не случайной, как того требовала классическая генетика

б)к наследованию приобретенного в результате направленной мутации свойства по наследству.

И здесь правота Лысенко несомненна.


Лысенко и мичуринцы говорили, что изменения наследственных признаков под влиянием измененных условий жизни НЕ случайны, а НАПРАВЛЕННЫ. "Современная" молекулярная генетика и здесь сдала позиции, которые защищали Н.И. Вавилов и "классическая" генетика: с точки зрения "современной" молекулярной генетики, мутации не случайны, а зависят от типа подвижного элемента, внедряющегося в ген.


4. Лысенко шел ещё дальше. Он считал, что путем направленного воздействия на растение можно добиться скачкообразного перехода одного вида в другой. В частности Лысенко считал, что озимая пшеница может быть изменена на яровую. Казалось бы – это один из наиболее одиозных пунтов разногласий. Эксперимент по превращению яровых в озимые, в котором, по сути дела, были получены МАССОВЫЕ, 100%(!), направленные мутации превращения ярового в озимое, где в качестве "контролирующего" процесс изменения наследственности "элемента" выступил СРОК осеннего посева изменяемых растений. Это достижение было отражено еще в научном отчете академика Т.Д. Лысенко за 1937 г., который был представлен им в Академию Наук СССР. Есть факты, что и этот пункт критики Лысенко будет свернут. Оказывается, что под влиянием "стресса" (подзимний посев яровой пшеницы - чем не "стресс"?) мобильный контролирующий аппарат генома так перестраивается, что начинается процесс унаследования нового свойства. Причем этот процесс идет ступенчато - в 3, 5 поколений ("по Лысенко"!). И возникающие при этом наследственные изменения носят явно приспособительный характер.


Лысенко и мичуринцы утверждали, что изменения наследственных признаков НАПРАВЛЕННЫ и соответственны измененным условиям жизни организмов. И вот ТОЛЬКО в этом пункте "современная" молекулярная генетика осталась солидарна с "классической" генетикой (с менделизмом–морганизмом) - она это напрочь отрицает. Тем более у нас есть основание сослаться на описанный выше эксперимент по превращению яровых в озимые, в котором, по сути дела, были получены (и уже не в первый раз) МАССОВЫЕ, 100%(!), направленные мутации превращения ярового в озимое, где в качестве "контролирующего" процесс изменения наследственности "элемента" выступил СРОК осеннего посева изменяемых растений. Это достижение было отражено еще в научном отчете академика Т.Д. Лысенко за 1937 г., который был представлен им в Академию Наук СССР. Есть факты, что и по этому пункту можно ждать сдачи позиции "молекулярной" генетикой. Оказывается, что под влиянием "стресса" (подзимний посев яровой пшеницы - чем не "стресс"?) мобильный контролирующий аппарат генома так перестраивается, что начинается процесс унаследования нового свойства. Причем этот процесс идет ступенчато - в 3, 5 поколений ("по Лысенко"!). И возникающие при этом наследственные изменения носят явно приспособительный характер. Именно за эти исследования американке Барбаре Макклинток в 1983 г. была присуждена Нобелевская премия, а Лысенко продолжают считать невежей".


Генетики утверждают, что представление о существовании направленных мутаций противоречит фундаментальным биологическим концепциям, - от молекулярной биологии до эволюционной теории. Но это ложь. Никаким фундаментальным концепциям это не противоречит. Механизм этого феномена ясен. Это транспорт информационной РНК от подвоя к привою по меклеточным трубочкам, а затем переписывание генетической информации с прибывшей в клетки информационной РНК подвоя на ДНК привоя и закрепление наследстенной информации в виде гена в ДНК половых клетках.


5. В отличие от морганистов Лысенко считал, что наследственность растений может быть изменена путем гибридизации. Гибридизация во многом аналогична половому размножению. Гибридизация может быть использована для целенаправленного изменения свойств растений. Гибридизация между видами может быть использована для увеличения урожайности. Не существует принципиальной разницвы между половым размножением и гибридизацией. После гибридизации при половом размножении признаки могут расщепляться


Морганисты, работавшие с животными, где все клетки отделены друг от друга, не учли, что у растений клетки одного организма образуют синтиций, то есть связаны меюду собой внеклеточными мостиками, что позволяет осуществлять транспорт информационной РНК из одной уже мутированной клетки в другую (см. раздел Х). Если добавить открытие возможности перезаписи информации от РНК на ДНК, то для отбора полезных мутаций и, следовательно, наследовании приоретенных признаков оказывается нет ничего невозможного. Для животных речь идет скорее о том, что очень трудно передать поелзные мутации в половые клетки. Но и здесь нет полного запрета, так как в процессе сперматогенеза и особенно во время отбора сперматозоидов и яйцеклеток обогащение в созревающих половых клетках полезных мутаций тоже возможно. Другое дело, что признаки, кодируемые сразу несколькими генами, не передаются по наследству, так как требуетеся одновременная мутация нескольких генов. Физиолог Л.А.Орбели как-то в шутку заметил [103], парируя доводы ламаркизма, тысячелетиями евреям режут препуции, однако все их мальчики рождаются необрезанными. То есть обрезание у евреев в течение тысячелетий не прибело к исчезновению у них крайней плоти.


Напротив, признаки, которые кодирует один ген могут быть отобраны. Именно этим можно обьяснить быстрое накопление у всей пополяции жителей Северной Европы способности переваривать молоко во взрослом состоянии за те 5000 лет, что прошли после одомашнивания коров. Этим признаком не обладают жители Азии, например, китайцы.


6. Ну и, конечно, идеология. Лысенко, считал, что морганизм не соответствует диалектическому материализму.


А теперь по пунктам. То, что мутации могут быть не случайными - ясно показано в статье Голубовского [104]: "Открытия в области подвижной генетики показали, что клетка как целостная система в ходе отбора может адаптивно перестраивать свой геном. Она способна ответить на вызов среды активным генетическим поиском, а не пассивно ждать случайного возникновения мутации, позволяющей выжить. А в опытах супругов Ледерберг у клеток не было выбора: либо смерть, либо адаптивная мутация". Правота Лысенко здесь неоспорима. На мой взгляд - здесь и корень разногласий. Под прикрытием "случайных" мутаций очень легко было не давать практического результата по новым сортам сколько угодно времени.


Тот факт, что хромосомы не являются тем носителем 'наследственного вещества', в котором и "только" (это важнейший пункт разногласий мичуринцев и вейсманистов) в котором сосредоточена информация о том, какие наследственные признаки будут у потомства - доказано опытами Б.Макклинток, которая в "...самом начале 50-х годов Б.МакКлинток открыла мобильные элементы, способные причудливо перемещаться по хромосомам и вне их" [105]. Т.е. сама цитоплазма ооцита оказывает влияние на, по крайней мере, степень проявления признака у потомка. Тем самым опровергнута и догма классической генетики о "принципиальной" случайности мутаций.


Или такой пример. В 1951 г. в юбилейной статье, посвященной академику О.Б. Лепешинской, Лысенко написал: "Нашей мичуринской биологией уже безупречно показано и доказано, что одни растительные виды порождаются другими ныне существующими видами… Рожь может порождать пшеницу, овес может порождать овсюг и т.д. Все зависит от условий, в которых развиваются данные растения".


Над этими фразами по сей день потешается каждый образованец: вот-де каким дураком был Лысенко! Надо сказать, что это поразительное научное провидение Лысенко было не просто смелым, оно было дерзким! Основанное на научном гении, это открытие в те годы не нашло прямых подтверждений, сам Лысенко к концу научной карьеры засомневался в нем и выдвинул гипотезу о том, что у существующих видов имеются защитные генетические механизмы, не дающие одному виду преобразовываться в другой, известный.


Но сегодня и эти идеи Лысенко в принципе подтверждены. Как пишет один участник интернетфорума, вот, к примеру, брошюра М.С. Тартаковского об эволюции жизни. В ней сообщается: "Но вот энтомолог-практик Г. Шапошников, доктор биологических наук, как-то случайно нарушил это табу. Изменив питание тлей, он вывел неизвестный природе вид насекомых. Работа была опубликована в авторитетном энтомологическом обозрении, докладывалась на международном конгрессе.


Сам ученый не делал никаких теоретических выводов из установленного им факта, но похоже все-таки, что именно среда (в данном случае питание) привела к кардинальной изменчивости организма. Причем благоприобретенные признаки переходят следующим поколениям, наследуются. Более того, новая форма тлей, как и положено отдельному виду, потеряла способность

производить потомство со своими столь недавними предками".


То есть, пусть и не известный ранее, но все же абсолютно новый вид получен уже даже не в растительном мире, а в мире живых существ. Получен, как и требовал Лысенко, путем изменения "условий, в которых развиваются данные" виды.


Последний пункт я не буду комментировать, так как не считают правыми ни тех ни других.


Наконец, в трех последующих разделах я приведу описания новых результатов в области молекулярной биологии, которые подтверждают позиции Лысенко. Недавно исследователи показали, что растения могут переписывать генетический код, который они наследуют от родителей, и возвращаться к таковому их бабушек и дедушек [106]. Обнаружены механизмы создания новых генов в ходе клеточного номогенез и антителообразования [107]. Обнаружена также способность клеток контролировать скорость мутирования [108]. Каюсь. Я эти сообщения сам по оригинальным статьям не проверял и готов признать, что они содержать чуть искаженную информацию. Пусть генетику меня "обуют". Описания их достаточно сложные и неискущенный читатель в принципе их может пропустить. А вообще, для общего развития рекомендую отличную статью Голубовского о внегенетическом наследовании [109].


2.8. ПЕРЕЗАПИСЬ КОДА


Недавно исследователи показали, что растения могут переписывать генетический код, который они наследуют от родителей, и возвращаться к таковому их бабушек и дедушек. Обнаруженный факт изумил бы морганистов. Он бросает вызов правилам учебника генетики, которые заявляют, что дети просто получают комбинации генов, которые несут их родители. Принцип этот, как известно, был установлен в девятнадцатом веке австрийским монахом Грегором Менделем в его опытах с растениями гороха" [110]. Приведу цитату из Интернета.


"Исследование, опубликованное на этой неделе в Nature, показывает, что не все гены ведут себя по этим правилам. Предполагается, что растения, и возможно другие организмы, включая людей, могут обладать механизмом дублирования, который может обходить нездоровые генные последовательности их родителей и возвращаться к более здоровому генетическому коду, которым обладали их бабушка и дедушка или прабабушка и прадедушка.


Роберт Прюитт (Pruitt) и его коллеги из Университете Пёрдью (Вест Лафайет, Индиана) натолкнулись на открытие при изучении конкретного сорта cress растения Arabidopsis, который несет мутацию в обеих копиях гена, именуемого HOTHEAD. На мутантных растениях лепестки и другие части цветка неправильно сращены вместе. Поскольку эти растения передают мутантный ген своим потомкам, обычная генетика диктует, что те будут также иметь сросшиеся цветки. На практике не так: группа Прюитта выяснила в результате некоторого времени наблюдений, что около 10% потомства имеют нормальные цветки.


Используя генетическое секвенсирование, то есть расшифровку последовательности нуклеотидов в ДНК, исследователи показали, что это второе поколение растений переписало последовательность ДНК одного или обоих из их генов hothead. Они заменили неправильный код их родителей обычным кодом, которым обладали более ранние поколения.


А когда команда изучила большое количество других генов, обнаружилось, что растения также часто редактировали их обратно к более ранней форме. "Это был большой сюрприз," - говорит Прюитт.

Открытие оставило генетиков потрясенными. "Это действительно ошеломляюще," - говорит Детлеф Вейгель (Weigel), который изучает генетику растений в Институте Макса Планка, Германия. "Это механизм, о существовании которого никто не подозревал".

Генетик Стивен Джакобсен (Jacobsen) из Калифорнийского университета, Лос-Анджелес, резюмирует еще более кратко. "Это действительно сверхъестественно," - говорит он.


Прюитт и другие исследователи ломают голову, чтобы объяснить точно, как растения могут переписывать их генетический код. Чтобы делать это, те нуждаются в некоем шаблоне (версии кода их бабушек и дедушек), который можно передавать от одного поколения к следующему.


Одна из возможностей состоит в том, что растения используют дополнительную копию гена, расположенную в другом месте в их ДНК. Но это кажется маловероятным, потому что команда ученых обнаружила, что растения могут переписывать код генов, которые не имеют никаких подобных им копий в другом месте генома.

Вместо этого, полагает Прюитт, растения несут неизвестный прежде запас связанной молекулы РНК, который действует как резервная копия ДНК. Такие молекулы могут передаваться в пыльцу или семена наряду с ДНК и использоваться как шаблон, чтобы исправлять некоторые гены. "Это - наиболее вероятное объяснение," - соглашается Вейгель.


Прюитт предполагает, что этот тип исправления гена происходит у Arabidopsis при нормальных условиях, только очень редко. Он говорит, что это происходит, когда ген hothead мутирует, возможно потому, что растение переживает стресс.


Действительно, такой процесс может существовать, потому что это помогает растениям выживать всякий раз, когда они окажутся в трудных условиях, вроде недостатка воды или питательных веществ. Такой стресс мог бы запускать у растений механизм возврата к генетическому коду предков, который является возможно более выносливым чем таковой их родителей. Чтобы проверить это предположение, Прюитт пытается выяснить в ходе исследований, побуждают ли стрессовые ситуации в действительности это явление.


Подобный процесс может иметь место даже у человека. В пользу этого говорят редкие случаи с детьми, унаследовавшими болезнетворные мутации, но выказывающими лишь слабые симптомы, возможно потому, что некоторые из их клеток вернулись к нормальному и более здоровому генетическому коду.

Если организм человека исправляет гены аналогичным образом, Прюитт полагает, что процедура могла бы быть с пользой позаимствована исследователями или докторами. Они могли бы идентифицировать РНК молекулы, которые выполняют "ремонт" и использовать их для исправления вредных мутаций в генах пациентов.

Но пока Прюитт и другие исследователи данной области ожидают, что их публикация вызовет много скептицизма. "Немедленная реакция - что они, должно быть, сделали ошибку," - говорит Вейгель, - "но я так не думаю."


2.9. ГЕНЕТИКА ИМУННОГО ОТВЕТА


В дарвинизме появление новых генов не рассматривается: все рассуждения ведутся вокруг уже существующих генов - либо их включения и выключения, либо замены в них отдельных нуклеотидов (а таким путем, как мы знаем, ничего всерьез нового нельзя создать даже у бактерий). Эту несуразность можно было не замечать, пока процесс формирования нового гена не был описан фактически. Однако в 1965-1982 годах несколько выдающихся генетиков из разных стран сумели расшифровать процедуру формирования целой плеяды генов. Каждый из них кодирует антитело (белковую молекулу иммуноглобулин, которая связывает антиген - чужеродную частицу, попавшую в организм теплокровного животного).


У зародыша млекопитающих совсем немного генов, кодирующих иммуноглобулины, - около сотни, тогда как множество различных антигенов необозримо велико. Поэтому в ходе развития и жизни организма разнообразие иммуноглобулинов каждый раз создается заново (точно так же, как заново создается любой орган). Происходит это путем комбинирования фрагментов существующих генов. Конкретное антитело обычно не выбирается из наличных иммуноглобулинов, а продуцируется в ответ на конкретную заразу (на антиген).


В стрессовой ситуации, которую вызывает массовое вторжение антигена, включается механизм перестройки иммуноглобулиновых генов: по каким-то не вполне еще понятным правилам генетическая система режет и сшивает фрагменты генов до тех пор, пока не найдет приемлемый вариант - тот, что синтезирует антитело, которое реагирует с вторгшимся антигеном, связывая его. Найденный вариант гена интенсивно размножается (копируется).


Механизм комбинаций работает, но довольно плохо, то есть поставляет антитела, связывающие антигены, но довольно слабо. Поэтому существует еще один механизм - соматический гипермутагенез, который включается после создания нужной комбинации фрагментов. Заключается он в том, что при копировании гены найденного варианта мутируют с огромной частотой (тут каждый тысячный нуклеотид заменяется, тогда как обычно точковый мутагенез в 100 миллионов раз менее интенсивен), так что порождается масса чуть отличных антител, различающихся одной аминокислотой или двумя, чем и достигается точная подгонка антитела к антигену. Конечный вариант гена снова копируется и запоминается иммуногенетической системой организма, то есть наследуется на время жизни особи.


Все это стало известно в 1982 году, когда генетик Судзуми Тонегава (образование получил в Японии, работу начал в Швейцарии и завершил в США) обнародовал итоговую работу по данной теме (через 5 лет он, и только он, получил Нобелевскую премию за расшифровку всего механизма - так уж в Нобелевском комитете заведено). За истекшие четверть века этот великолепный результат не вошел ни в одно известное мне руководство по биологической эволюции, а на недоуменные вопросы их авторы (и прочие ведущие дарвинисты) спокойно отвечают, что Тонегава лишь подтвердил справедливость принципа случайной изменчивости: и перебор фрагментов, и гипермутагенез идут ненаправленно, случайно.


Странно, если подтвердил, да столь красиво, почему бы не включить это в учебники? Ведь на счету дарвинизма ярких побед давно нет. Оказывается, ничего он не подтвердил (хотя и утверждал это в нобелевской лекции), на что и указали немногочисленные ламаркисты.


В книге "Что, если Ламарк прав?", которую написали австралийские иммуногенетики Э. Стил, Р. Бланден и Р. Линдли, приведены на сей счет любопытные цифры.


На первом этапе синтеза гена антитела идет, как мы знаем, комбинирование блоков. Если бы механизм Тонегавы перебирал одну за другой все возможные их комбинации, то, как показывает расчет, он наработал бы в одном организме мыши за ее жизнь 3 млн различных антител. Но возможных антигенов - миллиарды, и нет никакой гарантии, что среди созданных были бы те самые антитела, какие в данное время для данной особи нужны. Поэтому естественно, что процесс идет иначе: при комбинировании выбираются одни варианты много чаще других.


Разнообразие антител на первой стадии достигается комбинированием разнотипных участков генома, обычно именуемых буквами V, D и J. Точнее, в каждом иммуноглобулине комбинируются элементы из следующего набора: 100 V-элементов, 20 D-элементов и 4 J-элемента. Поскольку основной вклад в создание разнообразия вносят V-элементы, можно было бы ожидать, что они будут очень отличны друг от друга. Однако оказывается наоборот - они почти неразличимы. Это похоже на алфавит: разные буквы одного алфавита могут очень мало отличаться одна от другой и тем самым вызывать затруднения у постороннего (иврит, средневековая латынь, арабская вязь), но прекрасно выполнять свою функцию.


Еще удивительнее, что "около половины V-элементов никогда не участвуют в образовании антитела", а реальное одновременное разнообразие антител - отнюдь не 3 млн: наоборот, их всегда меньше 10 тыс. Но самое удивительное в том, что деление лимфоцита занимает более 5 часов, наработка нужного лимфоцита производится (как известно врачам) двое суток, то есть за это время произойдет всего 10 делений каждого лимфоцита. Это значит, что если нужный вариант найден лишь однажды, то появится всего лишь тысяча нужных клеток. В то же время болезнетворные бактерии делятся впятеро быстрее, и клонирование никак не сможет поспеть за их размножением. Дело явно не в одном лишь клонировании - нужно, чтобы клонов было сразу много.


Ход работы иммунной системы таков. Каждый В-лимфоцит (иммунная клетка, вырабатывающая антитела) синтезирует лишь один тип антител. Если бы множество В-лимфоцитов, производящих нужное антитело, действительно было клоном, происшедшим от единственной клетки, случайно нашедшей нужный ген антитела, то следовало бы ожидать огромного разброса сроков иммунного ответа больных - кому как повезло с поиском. Но этого нет. Первичная иммунная реакция организма наступает сразу, а затем несколько суток (острый период инфекционной болезни) тратится на создание "зародышевых центров", то есть так называемых фабрик антител. Если случайный поиск тут и идет, то он занимает очень мало времени по сравнению с остальными процессами. В любом случае это не череда случайных мутаций, а генетический поиск, то есть активность.


Очевидно, что нужный вариант бывает найден сразу многими клетками, поэтому разбросы усредняются, а множество нужных В-клеток оказывается достаточно велико. Это и понятно: поскольку у мыши одновременно имеется около 50 млн экземпляров В-лимфоцитов, а число различных антител, одновременно присутствующих в ее крови, близко к 10 тыс., то каждый тип антитела вырабатывается в среднем пятью тысячами клеток. Они-то при появлении заразы и ведут поиск нужного варианта антитела одновременно, чем обеспечивают создание многих клонов.


Но если очень многие лимфоциты почти сразу находят один и тот же вариант антитела, то налицо клеточный номогенез. Механизм его пока неизвестен, но уже видно, что его выяснение радикально повлияет на развитие и идей эволюции, и иммунологии. Жаль, что его никто пока не ищет, поскольку всех (насколько знаю из бесед с иммунологами) устраивает уверение, что достаточно случайной изменчивости и отбора, а затем - клонирования единственной клетки [111].


2.10. ПРОБЛЕМА РАЗНООБРАЗИЯ АНТИТЕЛ


Способность клеток контролировать скорость мутирования особенно ярко проявляется в работе иммунной системы. Биологов и медиков давно интересовал вопрос, каким образом белым кровяным клеткам - лимфоцитам - удается порождать такое огромное разнообразие антител, используемых для борьбы с различными инфекциями. Антитела - это белки, которые умеют безошибочно узнавать определенные бактерии, вирусы, а также любые чужеродные белки (и многие углеводы) и прикрепляться к ним, что приводит к обезвреживанию возбудителей и выделяемых ими токсинов. По примерным оценкам, организм человека способен производить не менее миллиона разных антител. Даже если в организм вторгается вирус, который раньше не встречался в природе, уже через несколько дней в крови можно обнаружить антитела, которые безошибочно узнают и "связывают" именно этого возбудителя (и никакого другого!) [112].


Организм человека не может заранее заготовить антитела на все случаи жизни, тем более способные противостоять неведомым бактериям и вирусам! Для кодирования миллиона антител

понадобилось бы два миллиона генов (поскольку каждое антитело состоит из двух белковых молекул), но ведь после расшифровки человеческого генома выяснилось, что общее число генов у человека не превышает 30 тысяч. Впрочем, еще задолго до расшифровки генома стало очевидно, что гены большинства антител, образующихся в крови при различных инфекциях, не закодированы в геноме изначально, а "изготавливаются" по мере необходимости из небольшого числа генов-заготовок. Происходит это путем интенсивного мутирования. В "гены-заготовки" вносятся случайные изменения (соматические мутации) до тех пор, пока не получится нужный белок - такой, который будет безошибочно "узнавать" нового возбудителя. Это открытие показало, что у клетки могут целенаправленно изменять собственный геном [113].


Но и это еще не все. Группа австралийских иммунологов показала, что изменения, приобретенные генами иммунных белков в течение жизни организма, иногда могут передаваться по наследству. И тогда потомство прямо от рождения оказывается более устойчивым к некоторым возбудителям. Ученые предположили, что тут имеет место механизм, благодаря которому приобретенный признак (ген нового антитела) может быть передан из лимфоцитов в половые клетки. Лимфоциты образуют внутри себя некое подобие РНК-содержащих вирусов, которые захватывают молекулы РНК, несущие информацию о строении нового антитела. Эти "вирусы собственного изготовления" выходят из лимфоцитов и разносятся с кровью по организму, попадая в разные клетки, в том числе и половые. Здесь методом обратной транскрипции генетическая информация переписывается с РНК на ДНК, и получившийся фрагмент ДНК встраивается в одну из хромосом половой клетки. Эти самодельные РНК-вирусы, образующиеся в лимфоцитах, по всем признакам и свойствам точно соответствуют геммулам, существование которых предсказывал великий Дарвин [114].


Итак, имея те же средства и приборы для научных исследований, Лысенко пришел к выводу, что за наследственность организма несут ответственность не эти пресловутые шарики, а любая частица организма, и изменяется организм под воздействием окружающей среды. Чуть ли не 50 лет спустя вооруженная электронными микроскопами и компьютерами Барбара Макклинток "снова" сделала это открытие [115]. Главный же вывод состоит в том, что Лысенко был прав в своём споре с морганистами.


Итак, Лысенко отвергал всеобъемлющее значение генетического кода. Морганисты же отрицали возможность наследования благоприобретенных признаков. Как видим, генетика в представлении морганистов и вейсманистов оказалась во многом неверной. Была открыто эпигеномное наследование. Оказалось, что факторы внешней среды имеют не меньшее, если не большее, значение, чем генетическй код. Сам код оказался неточным и одна и та же запись нуклеотидов может давать вследствие сплайсинга и присутствия интронов и экзонов до 60, а то и больше разных вариаций одного и того же белка. Раз так, то о каком точном кодировании может идти речь? Не больше, чем о вероятностном. Следовательно, современная наука показала, что обе стороны занимали односторонние позиции. Но Лысенко был правее. О том, что Лысенко прав писал и Флегр [116]. В последние годы появилось несколько наблюдений (см. разделы 2.8 – 2.10), которые делают позицию Лысенко в том стародавнем спопре ещё более прочной.


2.11. ЧТО ВИДИТ УЧЕНЫЙ?


В чем же суть спора и почему обе стороны оказались односторонни. Дело в том, что видит ученый. Ученый видит факт, только если у него есть бинокль в виде научной модели. Например, неграмотный человек видит в книге какие–то рисуночки, а грамотный понимает написанный там текст.


Расхождение касалось не только теорий, фактов и методов, непосредственно связанных с генетикой, оно было гораздо шире. Так в своем выступлении П.М.Жуковский сказал: "никогда не употребляются нашими оппонентами такие понятия как витамины, гормоны, вирусы". Т.Д. Лысенко в заключительном слове, касаясь выступления В.С. Немчинова, упомянувшего о подтверждении хромосомной теории методами математической статистики, высказал философское положение: "Изживая из нашей науки менделизм-морганизм-вейсманизм мы тем самым изгоняем случайности из биологической науки" [117].


Вспомним стенографический отчет о сессии ВАСХНИЛ 1948. На сессии выявилась полная противоположность двух познавательных структур у генетиков и лысенковистов. "В.С. Немчинов ...Я не могу разделить точку зрения товарищей, которые заявляют что к механизму наследственности никакого отношения хромосомы не имеют (Шум в зале.)

–голос с места. Механизмов нет.

В.С. Немчинов Это Вам так кажется что механизмов нет. Этот механизм уже умеют не только видеть, но и окрашивать и определять. (шум в зале)

–голос с места. Да это краски. И статистика."


Да! Лысенко прав, по крайней мере более прав, чем морганисты. Но почему они не могли понять друг друга? Спор морганистов и мичуринцев можно представить в виде спора о том, куда относится корейский язык, к иероглифическим языкам или основанным на буквенном алфавите. Морганисты утверждали, что корейский язык есть езык иероглифический, так как слова там запиусываются иероглифами. Мичуринцы говорили, что это не иероглифы, уж больно похожи элементы иероглифов. В действительности корейский язык основан на 24 буквах, но когда слога складывают слово, то они буквы организуются в пространстве таким образом, что образуется как бы иероглиф.


Особенно мне нравится вывод статьи Флегра [118], статьи, где он последовательно доказывает, что Лысенко в целом оказался прав: – "теории лысенкоистов настолько безумны, что их эксперименты никто другой раньше не делал, а их репутация так плоха, что ни один информированный и приличный ученый не захочет читать их работы или повторять их эксперименты". Ну не видно ему, что корейский язык не состоит из иероглифов и все тут. Ну нет у генетиков биноклей.


Лысенко чувствовал, что законы Менделя не стопроцентны. Наверное, это было виднее с точки зрения его научной парадигмы и на базе его практического опыта. Тем не менее, несмотря на ошибки обеих сторон, Лысенко назвали шарлатаном и обвинили во всех смертных грехах, а морганистов подняли на щит. Это по меньшей мере не справедливо.


Итак, ни те ни другие не оказались полностью правыми. И те и другие оказались в чем–то не правы. Другими словами, современная наука показала, что обе стороны занимали односторонние позиции [119]. Лысенко значение генетического кода не отрицал, но считал, что благоприобретенные признаки могут передаваться по наследству, хотя и на базе особых молекулярных механизмов считывания генетической информации. Но ведь в истории науки есть масса примеров, когда ученые были убеждены в неправильной научной модели, например, модели флогчистона, модели мировоого эфира, модели теплорода. Даже Менделеев, создатель периодического закона, допустил научную ошибку, считая, что закон основан на увеличении атомной массы. На самом деле свойства элементов периодически изменяются на основе увеличения заряда атомного ядра.


В 1948 г. «классическая генетика» была подвергнута критике прежде всего из-за низкой практической отдачи её для сельского хозяйства страны, схоластичности отдельных и основополагающих её положений, схоластичности многих работ учёных-генетиков этого направления, крайне низкого числа практически полезных разработок, многочисленности неудач и беспочвенных обещаний. Эти неудачи выглядели особенно ярко на фоне успехов мичуринской генетики и даже традиционной селекционной работы, известной задолго до возникновения так называемой генетики Вейсмана - Менделя – Моргана [120].


ИТОГИ ГЛАВЫ


Поэтому даже теперь, спустя годы почитатели Лысенко заявляют, что Лысенко мол формально оказался прав. Прав в том, что приобретенные изменения могут наследоваться, хотя и через механизм мутагенеза. Действительно, клонирование животных показало, что приобретенные признаки наследуются, хотя и очень очень ограниченно. В частности клонированные животные ускоренно стареют. Почти что найден и механизм для этого – процесс восстановление структуры ДНК в ядре особым белком и процесс синтеза этого белка. Но повторю, уровень наследования очень низкий и не все признаки передаются. Более того, в рамках той дискуссии речь о изменениях состояния ДНК идти не могла по причине ограниченности знаний того времени, т.е. можно лишь говорить о фенотипических признаках, видимых глазу и т.д., информация о которых непостижимым образом передавалсь потомкам.


Благоприобретенные изменения могут наследоваться путем воздесйтвия на процесс репарации и синтеза ДНК. Например, если животного кормить пишей с отсуствием какой нибудь аминокислоты и резким преобладанием другой, то при синтезе белков начнутся ошибки. Хотя в целом белок будет иметь почти ту же конфигурацию, но накопление невидимых (те. расположенных вне энзиматических и регулаторных доменов) конформационных изменений белка будет влиять на синтез белков, участвуюших в воспроизводстве ДНК, ее репарации. Поэтому будут накапливаться приобретенные изменения, а затем и передаваться по наследству. Конечно, тут опять есть опасность соскальзывания на путь терминологических споров. Например, можно утверждать, что путем кормления стимулируется мутагенез.


Ладно, оставим теорию и вернемся к жизни. Мы много говорили о Лысенко, о Мичурина. Но кто же они?


1   ...   4   5   6   7   8   9   10   11   ...   44

Похожие:

Миф о репрессиях в советской науке iconМиф о репрессиях в советской науке
Лирику пришлось убрать за неимением места (правда один раз не удержался – каюсь). Выводы же придется делать самому читателю. И хотя...

Миф о репрессиях в советской науке iconМиф сегодня
Что такое миф в наше время? Для начала я отвечу на этот вопрос очень просто и в полном соответствия с этимологией: миф

Миф о репрессиях в советской науке iconПрава человека: миф или реальность?
Муниципальное образовательное учреждение «Средняя школа №30» Юридический адрес: 414000 г. Россия г. Астрахань, ул. Советской милиции...

Миф о репрессиях в советской науке iconЭволюционный миф и современная наука
«Дарвин был неправ Теория эволюции, возмож­но, самая страшная ошибка, совершенная в науке» [цит по: 37, с. 48]

Миф о репрессиях в советской науке icon2009 г. Содержание Общие вопросы
Мифология древнего мира. ●Славянская мифология. ●Мифология народов Башкортостана. ●Литература и миф. ●Педагогические мифы. ●Исторические...

Миф о репрессиях в советской науке iconКонспект мероприятия
Цель: вспомнить, перечислить открытия, изобретения, конструкторские находки, ставшие решающими факторами в деле Победы и принесшие...

Миф о репрессиях в советской науке iconАльбер Камю Миф о Сизифе Камю Альбер Миф о Сизифе А. Камю Миф о Сизифе. Эссе об абсурде
Элементарная честность требует с самого начала признать, чем эти страницы обязаны некоторым современным мыслителям. Нет смысла скрывать,...

Миф о репрессиях в советской науке iconКорниловой Е. Н. «Миф и литература Нового времени»
Миф и обряд. Научные теории мифа: мифологическая школа, антропологическая школа, структурализм и др

Миф о репрессиях в советской науке iconЕ. М. Мелетинский Миф один из центральных феноменов в истории культуры и древнейший способ концепирования окружающей действительности и человеческой сущности. Миф первичная модель всякой идеологии и синкретическая
Миф — первичная модель всякой идеологии и синкретическая колыбель различных видов культуры — литературы, искусства, религии и, в...

Миф о репрессиях в советской науке iconРезультатом всякого творчества является некая выразительная форма. И следовательно, необходимо сразу сказать, что миф, как результат творческого усилия, есть
Из возможных точек зрения наиболее авторитетными по сей день считаются: семиотическая теория, рассматривающая миф в качестве знаковой...


Разместите кнопку на своём сайте:
lib.convdocs.org


База данных защищена авторским правом ©lib.convdocs.org 2012
обратиться к администрации
lib.convdocs.org
Главная страница