Вісник львів. Ун-ту visnyk LVIV univ серія географічна. 2004. Вип. 31. С. 43-55 Ser. Geogr. 2004. №31. Р. 43-55 теоретичні питання ландшафтознавчих досліджень

Скачать 87.99 Kb.
НазваниеВісник львів. Ун-ту visnyk LVIV univ серія географічна. 2004. Вип. 31. С. 43-55 Ser. Geogr. 2004. №31. Р. 43-55 теоретичні питання ландшафтознавчих досліджень
Дата конвертации02.11.2012
Размер87.99 Kb.


Серія географічна. 2004. Вип. 31. С. 43–55 Ser.Geogr. 2004. №31. Р.43–55


УДК 911:2


P. Angelstam 1, J. Törnblom 2

1Department of conservation biology and Faculty of forest science, Swedish university of agricultural sciences, SE-730 91 Riddarhyttan, Sweden.

2Department of natural sciences, Örebro university, SE-701 82 Örebro, Sweden.

Succeeding in maintaining forest biodiversity can even be viewed as an acid test of sustainability as a whole. The principle of sustainable forest management has stimulated a proliferation of a number of criteria and indicators. However, to achieve ecological sustainability, it is vital that the monitoring of a suite of relevant indicators are compared with targets to assess both status and, if repeated, the trends in actual landscapes. We first describe how traditional measurement tools for describing wood resources need to be complemented by monitoring of the elements of biodiversity including species, habitats and functions at multiple spatial scales. Second, we review examples of empirical non-linear relationships between presence and fitness of species’ populations and different levels of anthropogenic change in their respective habitats at different spatial scales, and how this can be used to formulate science-based performance targets for indicators. Finally, using the results from monitoring and with relevant targets, it is possible to make assessments of the status of a certain criterion, such as biodiversity. In this section examples of practical assessment tools such as gap analysis and habitat models are presented for strategic and tactic planning of operational management for protection, management and re-creation of different elements of biodiversity. Additionally, the need to assure communication with iterated feed-back of the results of assessments to managers and policy-makers is discussed. We finally stress the need for international co-operation, for example by establishing a network of case studies in the form of “landscape laboratories” in gradients of forest alteration and different governance systems together with managers of forests and woodland representing different trajectories towards SFM.

Key words: Sustainable forest management, biodiversity, landscapes, spatial scales.

Sustainable forest management (SFM) represents a vision for the use of forests based on satisfying ecological, economic and social values [69]. The current starting point for trajectories towards the SFM vision, however, varies considerably among countries and regions with different socio-economic settings and ecosystems [12]. Sweden, Switzerland and Russia provide three contrasting European examples where the focus has been and is on quite different SFM criteria. In Sweden, where forests have been subject to intensive management for sustained yield of wood for a long time, biodiversity interpreted as the ________________________

© Angelstam P., Törnblom J., 2004

44 P.Angelstam, J.Törnblom

maintenance of viable populations of naturally occurring species has been a major driver of changes towards SFM during the past decades [3]. By contrast, Switzerland’s steep terrain has promoted management for protective functions of the conifer-dominated mountain forests, and recently with an additional focus on biodiversity [38, 57]. Finally, in remote parts of Russia such as in the Komi Republic in northeasternmost Europe, large-scale logging of forests started only recently, and large intact forest areas still remain [88]. Here a major current challenge is to use not previously managed forest landscapes for the development of human welfare in a sustainable manner [64], but also to maintain the functionality of the last remaining large intact forest areas.

The international and national policy arenas, the forest sector, non-governmental organisations and scientists are the major actors trying to develop and interpret international and national policies on sustainable development in forests. In Europe the Ministerial Conference for the Protection of Forests in Europe (MCPFE) has derived a reasonably complete set of indicators defining different SFM criteria, including biodiversity and forest health [69]. The MCPFE’s criteria regarding ecological dimensions of SFM ultimately can be viewed as proxies of the natural capital [23]. Consequently, the maintenance of biodiversity and resulting products and services is a prerequisite for satisfying the economic and social benefits of forests and woodland including both terrestrial and aquatic systems [87].

Defining forest biodiversity. The natural potential vegetation of a large part of the terrestrial ecosystems in Europe is forest [51]. Forest biodiversity is made up by species, habitat structures and processes found in ecosystems with trees, and can therefore be maintained in both natural forests and in remnants of pre-industrial cultural woodland landscapes.

First, policies related to biodiversity of European forests and woodland make explicit reference to the concept of naturalness [e.g., 69]. In spite of the ambiguity of this concept [27], it is obvious that forest biodiversity indicators should represent elements found in naturally dynamic forests [60, 8]. Second, the maintenance of ecological values found in pre-industrial cultural landscapes are highlighted [37]. Reference areas for both visions are characterised by the presence of habitat elements such as dead wood, large old trees, a diversity of tree species, old-growth stands and the ecological integrity of aquatic systems [e.g., 36, 82]. While ‘laissez-faire’ management usually can enhance the naturalness vision, the maintenance of cultural landscapes require a certain amount of social and cultural capital [62]. In other words the maintenance of forest biodiversity encompasses two sets of broad visions depending on the history of forests and woodland in the actual landscape [e.g., 1]. The development of SFM should reflect both these visions.

The cover and types of forests and woodland are dynamic, including both degradation and restoration related to socio-economic changes [58]. Consequently, monitoring and assessment of SFM should not only encompass the area covered by forest and woodland at present, but rather a geographically contiguous units representing actual landscapes or ideally natural units such as watersheds. Such areas, hereafter called landscapes, have a wide range of implementing actors representing different institutions ranging from the forest and wood industry, small private landowners and commons to different public interests. However, even if the forest cover is constant, the relative proportion of different governance systems varies considerably among landscapes, regions and countries [e.g., 13]. This should be expected to have strong effects on the ways of and extent to which different policies can be implemented using different management and planning tools [30, 11].


Monitoring indicators of biodiversity. Monitoring the elements of forest biodiversity can be made at multiple spatial scales. At the international and national policy levels, indicators aim at communicating the status and trends of biodiversity to policy-makers and the general public. However, to allow effective operations, indicators should also be developed and applied at the level of forest management units. Such practical indicators need to be adapted to the local conditions and resources available to different end users ranging from corporate companies to the owners of small non-industrial private forests.

Because it is impossible to measure all aspects of biodiversity, there is a need for cost-efficient monitoring tools. At the policy level, international reporting is based on individual countries providing data like those collected in national forest inventories. In general, however, such programmes provide neither sufficient data on compositional (e.g. occurrence of specialised species), structural (e.g. quality of habitat networks), nor functional elements of biodiversity (e.g. ecosystem processes) to allow comprehensive monitoring [14]. Conversely, at the management unit level, the development of comprehensive biodiversity monitoring systems is still in its infancy. Based on the MCPFE indicators, attempts to build a system for biodiversity monitoring based on the composition, structure and function of natural forest ecosystems have been proposed [e.g., 44]. Evaluations of this system in European land use history gradients showed promising results at the scale of both stands and landscapes [65, 8, 10]. Additionally, there is a need for continuous evaluation both of the scientific validity of indicators and of the degree to which the results from indicator systems can be interpreted and communicated to stakeholders at all relevant levels [85]. These factors probably explain why real-life applications of such monitoring systems are still rare.

Performance targets. Habitat loss is a major factor affecting directly or indirectly the global decline of biodiversity [33]. With a biodiversity conservation perspective, the evaluation of hypotheses claiming species-specific “extinction thresholds” defined as the minimum amount of habitat required for the persistence of species in the landscape is an urgent task [54, 55, 28]. Appearing empirical evidence show that human-driven landscape changes have resulted in the trespassing of such critical levels of habitat loss. This applies to structural elements such as dead wood [20, 21], large habitat patches [56] and reduced amount of certain tree species [35]. In Europe an obvious consequence of this is that countries with a lower intensity and shorter history of forest use still host populations of species specialising on natural forest structures, while other countries do not [52, 65, 15].

Even though research on thresholds remains in its infancy, ecologically-based targets inspired from such thresholds could be used to postulate management and conservation strategies. We stress, however, the need for explicitly recognising uncertainty and, rather than proposing target numbers, there should be a focus on probabilistic targets defined using a variety of indicators, and on the associated “zones of risk” [e.g. 55, 61]. A general procedure for identifying thresholds to be used in the determination of conservation targets in forests was proposed by Angelstam et al. [6]: 1. Stratify the forests into broad cover types as a function of their natural disturbance regimes; 2. Describe the historical spread of different anthropogenic impacts in the forest region of concern that moved the system away from the reference conditions of naturalness or pre-industrial cultural landscapes; 3. Identify appropriate response variables (e.g. focal species, functional groups or ecosystem processes) that are affected by habitat loss and fragmentation; 4. For each forest type identified in step 1, combine steps 2 and 3 to look for the presence of non-linear responses and to identify zones of risk and uncertainty. 5. Identify the “currencies” (i.e.

46 P.Angelstam, J.Törnblom

species, habitats, and processes) which are both relevant and possible to communicate to stakeholders. 6. Combine information from different indicators selected.

Assessment of status and trends. Management of sustainable wood production as well as management for protection, management and restoration of the elements of biodiversity require planning at multiple scales. The approach used in most planning systems for large-scale forestry is hierarchical within a forest management unit (FMU) [24]. The planning problem is usually divided into three sub-processes: strategic, tactical and operational. Strategic planning means to decide on long-term goals covering an entire rotation and tactical planning to select among different alternatives based on the strategic goals, but on a shorter time horizon. Operational planning involves determining the actual operations. The same logic can be used to build a toolbox of analytic tools for the assessment of the structural elements of biodiversity being the focus in conservation, management, and restoration [11].

At the strategic level gap analysis is a tool for assessing the extent to which environmental policies succeed in maintaining biodiversity by protection, management and restoration of habitats [80]. Originally developed in the USA, gap analyses have been used in terrestrial systems to increase society’s awareness about conservation needs and to guide the practical implementation of such policies. The rationale for focusing on habitat (i.e. structural elements of biodiversity) is that it serves as a proxy for the maintenance of viable populations of species, vital ecosystem processes and resilience to external disturbance [e.g., 36]. Originally gap analyses focused on representation i.e., that the different types of conservation areas should reflect the natural composition of different ecosystems [80]. Angelstam and Andersson [4] and Lõhmus et al. [49] developed the idea for Sweden and Estonia, respectively, further by combining measurements of the habitat area with information about thresholds for the amount and quality of habitats needed to maintain viable populations within an ecoregion (Table 1).

Table 1

The ABC of gap analysis for strategic conservation planning



Reference/Benchmark (e.g., conditions such as found in naturally dynamic forests of pre-industrial cultural landscapes)


The present situation


Science-based threshold


Representation (e.g., analysis of representation for different types of forest and wooded grassland)


Long-term goal


Area gap (e.g., identification of area gaps for certain types of vegetation)


Given a policy which can be interpreted scientifically, like maintaining viable populations of naturally occurring species, reference conditions (A) such as found in naturally dynamic forests of pre-industrial cultural landscapes, can be quantified. By comparing the present situation (B) with A for different types of forest and wooded grassland, analyses of representation can be made. Finally, with knowledge about the quantitative requirements at the population level, expressed as a proportion of A, long-term targets can be formulated and compared with B, allowing the identification of area gaps for a certain type of vegetation. Next, to assure functional connectivity of the total area,


spatially explicit analyses need to be done for the tactical decisions regarding protection, management and restoration.

When gap analysis has been performed within a particular ecoregion, the forest types for which area gaps have been identified also need to be evaluated as to the extent to which they actually provide functional habitat for the specialised focal species. One approach to evaluate the functionality of existing networks of patches of different forest types is habitat suitability modelling [e.g., 81, 7]. This means combining spatially explicit land cover data with quantitative knowledge about the requirements of specialised species and producing spatially explicit maps describing the probability that a species is found in a landscape. With adequate quantitative data defining habitat variables and parameter values for a suite of particular focal species carefully selected to represent all forest types of concern, a series of predictive models can be built to assess the functionality of different habitat networks. This requires quantitative information on the habitat requirements of the species at different spatial scales. In general, a habitat model for a given species should build on the following variables: land cover type(s) constituting habitat, habitat patch size, landscape-scale proportion of suitable habitat, and habitat duration [14]. Using, for example, neighbourhood analysis techniques in Geographic Information Systems, the functionality of the network of each representative habitat (one or several land cover types) can be evaluated. Because a landscape usually contains a range of types of forest vegetation, a suite of species need to be modelled [74, 73]

The procedure suggested above provides a general basis for the assessment and subsequent planning of habitat networks. The development of practical tools using focal species is, however, subject to uncertainty depending on the knowledge about the different parameters included in the models. Another factor influencing the development of practical tools is the thematic and spatial resolution of the land cover data available to the planner [89]. For example, depicting the habitat of species dependent on dead wood (e.g. many species of woodpeckers, beetles, and wood-decay fungi) require spatially explicit data on the occurrence of this resource across the landscape. Such data is not currently available from forest management maps or classified satellite images, and therefore additional ancillary data needs to be collected in the field. Until such data become available, surrogate measures such as vicinity to roads as a proxy for the amount of dead wood could be used [21].

Ideally, focal species should be chosen among the most demanding species for a range of landscape attributes [43]. Since the most demanding species vary among habitats and scales, the suite of focal species should include representatives from a number of different taxa with different ecologies or functional groups [e.g., 2, 58]. Finally, each model should be validated in order to test how reliably one can predict occurrences of the focal species in real-world landscapes [81].

The need for spatially explicit forest management. Landscapes are not constant [17]. The variation among different European regions in the trajectories of the development towards the SFM vision is a reflection of this. Because most of Europe’s landscapes have an origin as forests or wooded grasslands, forests and forestry must be seen in a landscape perspective [29]. Current driving forces affecting European landscapes include the macroeconomic development affecting human population migration from the periphery to centre, the active expansion of the transport infrastructure, and the energy sector. Climatic change is another, but less predictable factor. As shown in the following three examples the effects of different elements of forest biodiversity through changes in the land cover and the spatial configuration are complex.

48 P. Angelstam, J. Törnblom

The implementation of the EU Habitats Directive by establishing a network of conservation areas with a favourable conservation status is one example. The appearing knowledge about thresholds for the amount of habitat viable populations of species need, i.e. reflecting the resources they require, has clear implications for biodiversity management. Even if still under development, it is fair to state that the maintenance of the species listed in the EU Birds and Habitats Directive requires functional networks of suitable habitats. Establishment of functional habitat networks may both suffer and benefit from the current land cover changes in Europe. Abandonment of agricultural land in the periphery of economic development lead to increased cover and connectivity for forest species [5]. The effects on the future functionality of habitat networks – or “green infrastructure” cannot be understood and planned without spatially explicit analyses.

The effect of land cover on aquatic systems is another example [83]. Interestingly enough, the EC Water Framework Directive has recently reinforced a drainage basin perspective on water issues and aquatic biodiversity. In order to maintain and restore surface and groundwater to “Good Ecological Status” dead wood is a key structure in stream order 1-4 [50]. Degerman et al. [25] studied the relationship between brown trout (Salmo trutta) and dead wood in Swedish streams and found a positive relationship between the abundance and size of trout and dead wood. The gap between the present amount of dead wood and the amount found in reference landscape is, however, about 1-2 orders of magnitude [46]. With limited resources to leave harvestable wood in the forest to restore the quality of aquatic systems, the spatial effects of retention on the functionality will be important.

Finally, because different forest vegetation types host different species, the maintenance of functional networks for species with different specialisations should be seen as separate and not necessarily overlapping green infrastructures. The coniferous and deciduous component in a landscape can serve as an example. In the watershed of the lake Hjälmaren in south-central Sweden, the coniferous forest is managed and forms a stable patch dynamics for at least species not requiring old-growth elements. The deciduous forest originates from abandoned wooded grasslands, and around the lake from the lowering of the lake level in the late 19th century [76, 77]. In contrast to the coniferous forest, the deciduous forest is the result of a series events driven by socio-economic change [53]. To maintain species of the deciduous forest in the long term, the deciduous component needs to be restored in what is now coniferous forest. However, dense populations of moose and deer severely hamper the recruitment of at least the most important tree species for specialised species (aspen, sallow and rowan) [16]. Another barrier is the poor integration between the management of trees in forest and on the agricultural landscapes.

Towards integrated and transdisciplinary approaches. Science develops indicators because they are required for the policy implementation process. The MCPFE criteria and indicators focus on the state of a system. However, such results need to be put into the context of continuous evolution of policies. Indicators should thus be seen as describing the success of a policy implementation feedback loop that begins with a Pressure leading to a State and resulting in a Response [70]. The PSR model, and subsequent elaboration of it, has been successful in helping structure the use of indicators [48]. The socio-economic context and the associated governance systems drive the state. Based on monitoring of the state of productive functions and biodiversity, and performance targets for the different indicators, assessments can be made. If the outcome of such assessments indicate the need for active response resulting in gradual modification of the state of the landscapes in the desired direction, management must be planned and implemented.


There is a growing insight that there are complex interactions between the parts of different ecosystems and institutions, which require transdisciplinary landscape-scale approaches [66, 79]. In Europe the EC Water Framework Directive stresses this. In spite of the presence of relevant tools from the natural and social sciences [11, 19], effective use of

them in a transdisciplinary fashion to facilitate the implementation of sustainable development policies is rare in the real world [18, 26]. Apparently, working across discipli-

nes in landscape analyses is a major challenge. In a comparison of two case studies Jakobsen et al. [34] revealed a set of similar individual-based, group-based and organisation culture-based barriers. However, even if they proposed a number of recommendations to scientists across disciplines, the limited number of case studies precludes thorough analyses of the effects of ecological, institutional and cultural contexts on both barriers and facilitators to bridge them.

The “Landscape Lab” approach. Even with a wide-spread insight that spatial forestry is necessary, the variation in ownership patterns and governance systems may provide both barriers and bridges to the application of spatially explicit assessment and planning. A major challenge is to achieve integration among actors. Researchers and managers accomplish most of their work in isolation and then present their results to decision-makers. There are hence a number of barriers, in particular when attempting to apply a landscape approach to the conservation of biodiversity [e.g., 31]. Using landscapes as laboratories is one approach. To describe this Kohler [39, p. 212] used the concept ‘practices of place’ whereby it is “…the arrangement of spatial elements that provides critical evidence of relations between creatures and their environment…”. Places are thus to the field ecologist what experimental set-ups are to laboratories. Co-ordinated case studies based on the idea of ‘Practices of place’ can thus be designed stratified in replicated land use history gradients. This can be made both in time and space.

For example, the historical occurrence of species dependent on dead wood can be compared with the decline of dead wood over time [e.g., 47], and the presence today can be made in landscapes located forest history gradients [e.g., 8, 10, 82]. This is consistent with the combination of case studies and quantitative data termed triangulation used in social sciences [19]. This approach may actually make it possible to “look into the future” to see what new pressures on forest ecosystems which can be expected. The gradient of commercial thinning is one example. While this has a very long tradition in Central Europe, this forest history phase reached northern Sweden in the 1960s and is now entering Russia.

Even if Europe is becoming more and more integrated in a political sense, the states of the forests and woodland ecosystems are still highly variable in different regions and countries and range from large intact natural areas to remnants of cultural woodlands. Additionally there is considerable variation as determined by the type of ownership and resulting governance system. These two dimensions should form the basis for a design for communication, research and development towards SFM in case studies representing gradients in social-ecological systems (Table 2). At the pan-European level this matrix would then cover the gradients in regional macroeconomic development, rural-urban transitions and with different sets of problems related to biodiversity and ecosystem integrity. To promote this idea we encourage the development of case studies not only as a research tool, but also as a tool for demonstration of bridges to deal with implementation obstacles. One approach is the Canadian model forest network, which together forms a partnership between individuals and organisations sharing the common goal of sustainable forest management (see www.modelforest.net). Such a network of forest management units consisting of actual landscapes with their characteristic ecosystems, actors and economic activities can be used as the sites for spreading good examples.

50 P. Angelstam, J. Törnblom

Table 2

Idealised matrix for selecting “Landscape Labs”

(Based on [86, 67, 40, 84, 29, 32, 68, 88, 41, 63, 72, 75, 22, 45, 53, 71, 83, 6, 42, 57, 78])

Governance system

Non-Industrial Private

Commercial Company

Public management


Forest and woodland system

Wooded grassland

Agricultural sub-sidies and land abandonment

Ecological meat production

Urban green space and forestry

Recreation forest

Plantations on formerly cleared land

Energy forests

Eucalypt forests in Portugal

Exotic conifer plantations in Scotland

Habitat restoration in Western Europe

Altered tree species composition

Southern Fennoscandia

Intensive forest management for fiber and wood

Transformation of coniferous to deciduous forest

Removal of undesired tree species

Semi-natural managed

Baltic States

Managed forests in Fennoscandia

State-owned forests in Fennoscandia

Protection forests in mountains

Benchmark/ reference

Pre-industrial cultural landscapes

Woodland Key Habitats

Remote parts of Russia

Russian Strict State Reserves

Ideally, adaptive management teams [18] should be formed. This means that the level of the actual case study participatory experts and stakeholders including researchers, land managers and policy-makers share decisions and responsibilities toward the success or failure of the strategy they jointly adopted. To put this bottom-up reflexive iterative procedure into action and to design management applications, we suggest the development of an international network of adaptive management teams. This network should be charged with testing different approaches to the management of forests that will ensure that biodiversity is restored in areas where it has been lost and maintained where forestry intensification has yet to occur.

Acknowledgements. This paper is based on the plenary lecture presented at the symposium in Florence, the work with the follow-up volume of Ecological Bulletins [9] to the EC-funded BEAR project reported as Ecological Bulletins 50 [44], the development of Aquatic Gap analyses with the landscape ecology group at Örebro university, and discussions during a workshop held within the COST Action E 25 “European Network for long-term Forest Ecosystem and Landscape Research (ENFORS)” with Peter Biber, Hubert Hasenauer Norbert Kräuchi, Paul Tabbush and Uwe Schneider.



  1. Agnoletti M. Introduction: the development of forest history research // Methods and approaches in forest history. – Wallingford, 2000.

  2. Angelstam P. Maintaining and restoring biodiversity by developing natural disturbance regimes in European boreal forest // Journal of Vegetation Science. 1998. No 9(4).

  3. Angelstam P. Forest biodiversity management - the Swedish model // Towards Forest Sustainability. Canberra, Washington, 2003.

  4. Angelstam P., Andersson L. Estimates of the needs for nature reserves in Sweden // Scandinavian Journal of Forestry Supplement. 2001. No 3.

  5. Angelstam P., Boresjö-Bronge L., Mikusinski G. et al. Assessing village authenticity with satellite images – a method to identify intact cultural landscapes in Europe // Ambio. 2003c. No 33(8).

  6. Angelstam P., Boutin S., Schmiegelow F. et al. Targets for boreal forest biodiversity conservation – a rationale for macroecological research and adaptive management // Ecological Bulletins. 2004e. No 51.

  7. Angelstam P., Bütler R., Lazdinis M. et al. Habitat thresholds for focal species at multiple scales and forest biodiversity conservation – dead wood as an example // Annales Zoologici Fennici. 2003b. No 40.

  8. Angelstam P., Dönz-Breuss M. A system for indicators of forest biodiversity at the stand scale (INFOBIOS) - differences in naturalness within European forest history gradients. // Ecological Bulletins. 2004. No 51.

  9. Angelstam P., Dönz-Breuss M., Roberge J.-M. (eds.) Targets and tools for the maintenance of forest biodiversity // Ecological Bulletins. 2004f. 51

  10. Angelstam P., Edman T., Dönz-Breuss M., Wallis deVries M. Land management data and terrestrial vertebrates as indicators of forest biodiversity at the landscape scale // Ecological Bulletins. 2004c. 51.

  11. Angelstam P., Mikusinski G., Rönnbäck B.-I. et al. Two-dimensional gap analysis: a tool for efficient conservation planning and biodiversity policy implementation // Ambio. 2003a. No 33.

  12. Angelstam P., Persson R., Schlaepfer R. The sustainable forest management vision – barriers and bridges for the maintenance of biodiversity // Ecological Bulletins. 2004a. No 51

  13. Angelstam P., Pettersson B. Principles of present Swedish forest biodiversity management // Ecol. Bull. 1997. No 46.

  14. Angelstam P., Roberge J.-M., Dönz-Breuss M. et al. Monitoring of forest biodiversity at multiple spatial scales – from the policy level to actual management units // Ecological Bulletins. 2004b. No 51.

  15. Angelstam P., Roberge J.-M., Lõhmus A. et al. Habitat modelling as a tool for landscape-scale conservation – a review of parameters for focal forest birds // Ecological Bulletins 2004d. No 51.

  16. Angelstam P., Wikberg P. E, Danilov P. et al. Effects of moose density on timber quality and biodiversity restoration in Sweden, Finland and Russian Karelia // Alces. 2000. No 36.

  17. Bengtsson J., Angelstam P., Elmqvist T. et al. Reserves, resilience and dynamic landscapes // Ambio. 2003. No 32 (6).

  18. Boutin S. et al. The active adaptive management experimental team: a collaborative approach to sustainable forest management // Advances in forest management: from knowledge to practise. Edmonton, 2002.

52 P. Angelstam, J. Törnblom

  1. Bryman A. Social research methods. – Oxford, 2001.

  2. Bütler R., Angelstam P., Schlaepfer R. Quantitative snag targets for the three-toed woodpecker, Picoides tridactylus // Ecological Bulletins. 2004. No 51.

  3. Bütler R., Angelstam P., Ekelund P., Schlaepfer R. Dead wood threshold values for the Three-toed woodpecker in boreal and sub-alpine forest // Biological Conservation. 2004. In press.

  4. Carey P. D., Short C., Morris C. et al. The multi-disciplinary evaluation of a national agri-environment scheme // Journal of Environmental Management. 2003. No 69.

  5. Costanza R., Daly H. E., Bartholomew J. A. Goals, agenda, and policy recom­mendations for ecological economics // Ecological Economic. – New York, 1991.

  6. Davis L. S., Johnson K. N., Bettinger P. S., Howard T. E. Forest management. To sustain ecological, economic, and social values. – Boston, 2001.

  7. Degerman E., Sers B., Törnblom J., Angelstam P. Large woody debris and brown trout in small forest streams – towards targets for assessment and management of riparian landscapes // Ecological Bulletins. 2004. No 51.

  8. Duinker P. N., Trevisan L. M. Adaptive management: progress and prospects for Canadian forests // Towards sustainable management of the boreal forest. – Ottawa, 2003.

  9. Egan D., Howell E.A. The historical ecology handbook. – Covelo, 2001.

  10. Fahrig, L. Effect of habitat fragmentation on the extinction threshold: a synthesis // Ecological Applications. 2002. No 12.

  11. Farrell E. P., Führer E., Ryan D. et al. European forest ecosystems: building the future on the legacy of the past // Forest Ecology and Management. 2000. No 132.

  12. Fries C. et al. A review of conceptual landscape planning models for multiobjective forestry in Sweden // Can. J. For. Res. 1998. No 28.

  13. Gutzwiller K. J. (ed.) Applying landscape ecology in biological conservation. Springer, 2002.

  14. Hansson L. Key habitats in Swedish managed forests // Scandinavian Journal of Forest Research Supplement. 2001. No 3.

  15. Heywood V.H. (ed.) Global biodiversity assessment. – Cambridge. 1995.

  16. Jakobsen C. H., Hels T. McLaughlin W. J. Barriers and facilitators to integration among scientists in transdisciplinary landscape analyses: a cross-country comparison // Forest Policy and Economics. 2004. No 6.

  17. Jansson G., Angelstam P. Threshold levels of habitat composition for the presence of the long-tailed tit (Aegithalos caudatus) in a boreal landscape // Landscape Ecology, 1999. No 14.

  18. Karr J. R. Health, integrity and biological assessment: the importance of measuring whole things // Ecological integrity. – Washington, 2000.

  19. Kirby K. J., Watkins C. The ecological history of European forests. Wallingford, 1998.

  20. Kräuchi N., Brang P., Schönenberger W. Forests of mountainous regions: gaps in knowledge and research needs // Forest Ecology and Management. 2000. No 132.

  21. Kohler R. E. Landscapes and labscapes. Exploring the lab-field border in biology. Chicago, 2002.

  22. Korhonen K.-M., Laamanen R., Savonmäki S. Environmental guidelines to practical forest management. Helsinki, 1998.


  1. Kumm K.-I. Sustainability of organic meat production under Swedish conditions // Agriculture, Ecosystems and Environment. 2002. No 88.

  2. Kurlavicius P., Kuuba R., Lukins M. et al. Identifying biologically valuable forests in the Baltic States from forest databases // Ecological Bulletins. 2004. No 51.

  3. Lambeck R. J. Focal species: a multi-species umbrella for nature conservation // Conservation Biology. 1997. No 11.

  4. Larsson T.-B. et al. Biodiversity evaluation tools for European forests // Ecol. Bull. 2001. No 50.

  5. Larsson K., Simonsson G. Den halländska skogen – människa och mångfald // Lännstyrelsen i Halland, Meddelande. 2003 No 7.

  6. Liljaniemi P. et al. Habitat characteristics and macroinvertebrate assemblages in boreal forest streams: relations to catchment silvicultural activities // Hydrobiologia. 2002. No 474.

  7. Linder P. and Östlund L. Structural changes in three mid-boreal Swedish forest landscapes, 1885-1996. // Biological Conservation. 1998. No 85.

  8. Linser S. Critical analysis of the basics for the assessment of sustainable development indicators // Freiburger forstliche Forschung. 2001. Band 17.

  9. Lõhmus A., Kohv K., Palo A., Viilma K. Loss of old-growth, and the minimum need for strictly protected forests in Estonia // Ecological Bulletins. 2004. No 51.

  10. Marcus W. A. et al. Mapping the spatial and temporal distributions of woody debris in streams of the Greater Yellowstone Ecosystem, USA // Geomorphology. 2002. No 44.

  11. Mayer H. Wälder Europas. – Stuttgart, 1984.

  12. Mikusinski G., Angelstam P. Economic geography, forest distribution, and woodpecker diversity in Central Europe // Conservation Biology. 1998. No 12.

  13. Mikusinski G., Angelstam P., Sporrong U. Distribution of deciduous stands in villages located in coniferous forest landscapes in Sweden // Ambio. 2003. No 33(8)

  14. Mönkkönen M., Reunanen, P. On critical thresholds in landscape connectivity: a management perspective // Oikos. 1999. No 84.

  15. Muradian R. Ecological thresholds: a survey // Ecological Economics. 2001. no 38.

  16. Mykrä S., Kurki S., Nikula A. The spacing of mature forest habitat in relation to species-specific scales in manages boreal forests in NE Finland // Annales Zoologici Fennici. 2000. No 37.

  17. Neet C., Bolliger M. Biodiversity management in Swiss mountain forests // Ecol. Bull. 2004. No 51.

  18. Nilsson S.G., Hedin J., Niklasson M. Biodiversity and its assessment in boreal and nemoral forest // Scandinavian Journal of Forest Research Supplement. 2001. No 3.

  19. Nilsson S., Sallnäs O., Duinker P. Future forest resources of western and eastern Europe. – Carnforth, 1992.

  20. Peterken G. Natural Woodland: Ecology and Conservation in Northern Temperate Regions. – Cambridge, 1996.

  21. Phillis Y. A., Andriantiatsaholiniana L. A. Sustainability: an ill-defined concept and its assessment using fuzzy logic // Ecological Economics, 2001. No 37.

  22. Pierce Colfer C. J., Byron Y. (eds) People managing forests. – Bogor, 2001.

  23. Pietsch S. A., Hasenauer H. Using mechanistic modeling within forest ecosystem restoration // Forest Ecology and Management. 2002. No 159.

54 P. Angelstam, J. Törnblom

  1. Pollard D. High conservation value forests in practise. – Glan, 2003.

  2. Puumalainen J. Structural, compositional and functional aspects of forest biodiversity in Europe. // Geneva timber and forest discussion papers. – New York, 2001.

  3. Rabeni C. F., Sowa S. P. A landscape approach to maintaining the biota of streams // Integrating landscape ecology into natural resource management. – Cambridge, 2002.

  4. Rackham O., Moody J. The making of the Cretan landscape. – Manchester, 1996.

  5. Raivio S., Normark E., Pettersson B., Salpakivi-Salomaa P. Science and management of boreal forest biodiversity // Scand. J. For. Res. Suppl. 2001. No 3.

  6. Rametsteiner E., Mayer P. Sustainable forest management and pan-European forest policy // Ecol. Bull. 2004. No 51.

  7. Rapport D. J., Friend A. M. Towards a comprehensive framework for environmental statistics: a stress-response approach. – Ottawa, 1979.

  8. Reed D. D., Jones E. A., Tomé M. and Araújo M.C. Models of potential height and diameter for Eucalyptus globulus in Portugal // Forest Ecology and Management. 2003. No 172.

  9. Richardson J., Björheden R., Hakkila P. et al. (eds.) Bioenergy from sustainable forestry. Guiding principles and practice. – Dordrecht, 2002.

  10. Roberge J.-M., Angelstam P. Usefulness of the umbrella species concept as a conservation tool // Conservation Biology. 2004. No 18(1).

  11. Root K. V., Akcakya H. R., Ginzburg L. A multispecies approach to ecological valuation and conservation // Conservation biology. 2002. No 17.

  12. Roovers P., Hermy M., Gulinck H. Visitor profile, perceptions and expectations in forests from a gradient of increasing urbanisation in central Belgium // Landscape and Urban Planning. 2002. No 59.

  13. Rydin H., Borgegård S.-O. Plant species richness on islands over a century of primary succession: Lake Hjälmaren // Ecology. 1988. No 69(4).

  14. Rydin H., Borgegård S.-O. Plant characteristics over a century of primary succession on islands: Lake Hjälmaren. Ecology. 1991. No 72 (3).

  15. Sandström U.G., Khakee A., Angelstam P. Urban planner’s knowledge of biodiversity maintenance – an evaluation of six Swedish cities // Landscape and Urban Planning. In press.

  16. Schneider R.L., Mills E.L., Josephson D.C. Aquatic-terrestrial linkages and implications for landscape management // Integrating landscape ecology into natural resource management. – Cambridge, 2002.

  17. Scott J.M., Tear T.H., Davis F.W. (eds.) Gap analysis: a landscape approach to biodiversity planning. – Bethesda, 1996.

  18. Scott J.M., Heglund P.J., Morrison M. et al. Predicting species occurrences: issues of scale and accuracy. – Covelo, 2002.

  19. Shorohova E., Tetioukhin S. Natural disturbances and the amount of large trees, deciduous trees and coarse woody debris in the forests of Novgorod Region, Russia // Ecological Bulletins. 2004. No 51.

  20. Stålnacke P., Grimvall A., Libiseller C. et al. Trends in nutrient concentrations in Latvian rivers and the response to the dramatic change in agriculture // Journal of Hydrology. 2003. No 283.

  21. Summers R. W., Mavors R. A. MacLennan A. M., Rebecca G. W. The structure of ancient native pinewoods and other woodlands in the Highlands of Scotland // Forest Ecology and Management. 1999. No 119.


  1. Uliczka H., Angelstam P., Roberge, J.-M. Indicator species and biodiversity monitoring systems for non-industrial private forest owners – is there a communication problem? // Ecological Bulletins. 2004. No 51.

  2. Wallis de Vries M. F. Large herbivores and the design of large-scale nature reserves in western Europe // Conservation Biology. 1995. No 9.

  3. Wiens J. Riverine landscapes: taking landscape ecology into the water // Freshwater Biology. 2002. No 47.

  4. Yaroshenko A.Yu., Potapov, P.V., Turubanova S.A. The intact forest landscapes of Northern European Russia. – Moscow, 2001.

  5. Young J. E., Sanchez-Azofeifa G. A. The role of geographical information systems and optical remote sensing in monitoring boreal ecosystems // Ecological Bulletins. 2004. No 51.



П. Ангельстам1, Й. Тьорнблм 2

1Факультет лісівництва, Шведський університет сільськогосподарських наук

Ріддаргіттан, Швеція

2Відділ природничих наук, Університет Оребро

Оребро, Швеція

Одним із компонентів екологічної стабільності є підтримка біорізноманіття лісових ландшафтів шляхом поєднання заходів з охорони, менеджменту та відновлення. Досягнення цієї цілі можна розглядати як головну умову сталого розвитку в цілому. Впровадження принципу сталого лісового менеджменту стимулювало появу багатьох критеріїв та індикаторів. Однак для досягнення екологічної стабільності моніторинг відповідних показників повинен здійснюватися у постійному порівнянні з цілями для того, щоб можна було оцінити теперішній статус та тенденції розвитку ландшафтів. Показано, як традиційні засоби опису лісових ресурсів повинні бути доповнені елементами моніторингу біорізноманіття на різних просторових рівнях, включно з видами, умовами пробування та функціями.

Розглянуто приклади емпіричних нелінійних залежностей поміж популяціями певних видів та рівнями антропогенних змін їхніх умов місцепробування на різних просторових рівнях. З’ясовано, як це допомагає сформулювати відповідні цілі. Отож, використовуючи результати моніторингу та маючи відповідні цілі, можна оцінити статус певного критерію – такого, як біорізноманіття. Наведено приклади оцінки за допомогою аналізу пробілів (gap analysis) та моделі місцепробувань для стратегічного та тактичного планування менеджменту для захисту, підтримки та відтворення різних елементів біорізноманіття. Обговорено потребу постійного інформування менеджерів та політиків щодо результатів оцінки.

Ключові слова: сталий лісовий менеджмент, біорізноманіття, ландшафти, просторові рівні.

Стаття надійшла до редколегії 20.03.2004

Прийнята до друку 16.06.2004

Добавить в свой блог или на сайт


Вісник львів. Ун-ту visnyk LVIV univ серія географічна. 2004. Вип. 31. С. 43-55 Ser. Geogr. 2004. №31. Р. 43-55 теоретичні питання ландшафтознавчих досліджень iconСник львів. Ун-ту серія філол. 2003. Вип. 31. С. 75-92 visnyk LVIV univ. Ser. Philologi. 2003. №31. P. 75-92 інтерпретація тексту
Досліджено образну палітру колядок І щедрівок з військовими мотивами. На багатому ілюстративному матеріалі розглянуто основні образні...

Вісник львів. Ун-ту visnyk LVIV univ серія географічна. 2004. Вип. 31. С. 43-55 Ser. Geogr. 2004. №31. Р. 43-55 теоретичні питання ландшафтознавчих досліджень iconВісник Львівського університету. Серія хімічна. 2011. Випуск 52. С. 41-47 Visnyk of the LVIV University. Series Chemistry. 2011. Issue 52. P. 41-47
Методом рентгенівського порошкового аналізу досліджено сплави квазібінарних сис

Вісник львів. Ун-ту visnyk LVIV univ серія географічна. 2004. Вип. 31. С. 43-55 Ser. Geogr. 2004. №31. Р. 43-55 теоретичні питання ландшафтознавчих досліджень iconВісник Харківського національного університету імені В. Н. Каразіна. Серія: «Психологія». 2009. №857. Вип. 42. С. 85-91
Кочарян А. С., Якименко О. Ю. Особенности симптомокомплекса маскулинности/фемининности у девушек, находящихся на разных этапах психосексуального...

Вісник львів. Ун-ту visnyk LVIV univ серія географічна. 2004. Вип. 31. С. 43-55 Ser. Geogr. 2004. №31. Р. 43-55 теоретичні питання ландшафтознавчих досліджень iconВісник Харківського національного університету імені В. Н. Каразіна. Серія: «Психологія». 2009. №857. Вип. 42. С. 78-84
Кочарян А. С., Фролова Е. В., Дармостук Н. В метод исследования структурной организации полоролевой сферы личности // Вісник Харківського...

Вісник львів. Ун-ту visnyk LVIV univ серія географічна. 2004. Вип. 31. С. 43-55 Ser. Geogr. 2004. №31. Р. 43-55 теоретичні питання ландшафтознавчих досліджень iconВісник Харківського національного університету імені В. Н. Каразіна. Серія: «Психологія». 2010. №902. Вип. 43. С. 104-107
Кочарян А. С., Кожина М. Ю. Особенности структуры материнства у беременных женщин с разным типом полоролевой идентичности // Вісник...

Вісник львів. Ун-ту visnyk LVIV univ серія географічна. 2004. Вип. 31. С. 43-55 Ser. Geogr. 2004. №31. Р. 43-55 теоретичні питання ландшафтознавчих досліджень iconКнига в Україні 1861-1917 : Матер до репертуару укр книги. Вип. 12, Ч. 1
Вісник №1/2 : Серія: Історія І філософія науки І техніки Вип. 17 / Дніпропетровський національний університет імені О. Гончара; Відп...

Вісник львів. Ун-ту visnyk LVIV univ серія географічна. 2004. Вип. 31. С. 43-55 Ser. Geogr. 2004. №31. Р. 43-55 теоретичні питання ландшафтознавчих досліджень iconДн І пропетровсь ки й національний університет ім. Олеся Гончара Наукова бібліотека Бюлетень №2 нових надходжень літератури у лютому 2011 року м. Дніпропетровськ
Вісник : Зб наук праць: Серія книгознавство, бібліотекознавство та інформаційні технології. Вип. 4 / Львівський національний університет...

Вісник львів. Ун-ту visnyk LVIV univ серія географічна. 2004. Вип. 31. С. 43-55 Ser. Geogr. 2004. №31. Р. 43-55 теоретичні питання ландшафтознавчих досліджень iconИ. А. Кочарян // Вісник Харківського національного університету імені В. Н. Каразіна, серія „Психологія”. Харків: Вид-во хну, 2008. №793. Вип. 39. С. 223-229
Кочарян И. А. Провокативный подход в психокоррекции проблем эмоциональной близости и ответственности в межличностных отношениях /...

Вісник львів. Ун-ту visnyk LVIV univ серія географічна. 2004. Вип. 31. С. 43-55 Ser. Geogr. 2004. №31. Р. 43-55 теоретичні питання ландшафтознавчих досліджень iconА. С., Лисеная А. М. Психотерапевтический контекст переживания // Вісник Харківського національного університету імені В. Н. Каразіна. Серія: «Психологія». 2010. №913. Вип. 44. С. 71-74
Кочарян А. С., Лисеная А. М. Психотерапевтический контекст переживания // Вісник Харківського національного університету імені В....

Вісник львів. Ун-ту visnyk LVIV univ серія географічна. 2004. Вип. 31. С. 43-55 Ser. Geogr. 2004. №31. Р. 43-55 теоретичні питання ландшафтознавчих досліджень iconМ. Е. Межличностная созависимость у мужчин: полоролевые аспекты // Вісник Харківського національного університету імені В. Н. Каразіна. Серія: «Психологія». 2010. №913. Вип. 44. С. 45-47
Жидко М. Е. Межличностная созависимость у мужчин: полоролевые аспекты // Вісник Харківського національного університету імені В....

Разместите кнопку на своём сайте:

База данных защищена авторским правом ©lib.convdocs.org 2012
обратиться к администрации
Главная страница